Cardiac natriuretic peptides (NP) are major activators of human fat cell lipolysis and have recently been shown to control brown fat thermogenesis. Here, we investigated the physiological role of NP on the oxidative metabolism of human skeletal muscle. NP receptor type A (NPRA) gene expression was positively correlated to mRNA levels of PPARγ coactivator-1α (PGC1A) and several oxidative phosphorylation (OXPHOS) genes in human skeletal muscle. Further, the expression of NPRA, PGC1A, and OXPHOS genes was coordinately upregulated in response to aerobic exercise training in human skeletal muscle. In human myotubes, NP induced PGC-1α and mitochondrial OXPHOS gene expression in a cyclic GMP-dependent manner. NP treatment increased OXPHOS protein expression, fat oxidation, and maximal respiration independent of substantial changes in mitochondrial proliferation and mass. Treatment of myotubes with NP recapitulated the effect of exercise training on muscle fat oxidative capacity in vivo. Collectively, these data show that activation of NP signaling in human skeletal muscle enhances mitochondrial oxidative metabolism and fat oxidation. We propose that NP could contribute to exercise training-induced improvement in skeletal muscle fat oxidative capacity in humans. IntroductionThe cardiac hormones, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), play a major role in the regulation of fluid homeostasis and cardiac physiology (1). Natriuretic peptidemediated (NP-mediated) biological responses are largely mediated through cyclic GMP (cGMP) produced by the guanylyl cyclase domain of NP receptor type A (NPRA) (2). Although classically considered as cardiovascular hormones, we have shown that NP display a potent lipolytic effect in human adipocytes (3). They promote a rapid and sustained rise of intracellular cGMP that activates a cGMP-dependent protein kinase, PRKG1, which then phosphorylates perilipin 1 and hormone-sensitive lipase, necessary steps to initiate lipolysis (4). The potent lipolytic effect of NP is restricted to primates. In contrast, murine adipocytes exhibit a predominance of the clearance receptor NP receptor type C (NPR-C) and a very low expression of the biologically active NPRA (5). Interestingly, the lipolytic effect of NP is fully rescued in adipocytes of NPR-C (also known as Npr3) knockout mice. Moreover, NP induce a "browning" of human white adipocytes (6). This finding may be physiologically relevant considering the presence of functional brown fat in humans (7). Together, these studies suggest that NP plays a potent metabolic role in human adipose tissue. Recent data suggest that mice overexpressing Nppb and Prkg1 are protected from high-fat diet-induced obesity and insulin resistance and show increased energy expenditure (8). This phenotype could be explained by significant changes in skeletal muscle fat oxidative capacity. The physiological relevance and molecular mechanisms of this finding have yet to be addressed in humans. In this study,
The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P< 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.
Involvement of sympathetic nervous system and natriuretic peptides in the control of exercise-induced lipid mobilization was compared in overweight and lean men. Lipid mobilization was determined using local microdialysis during exercise. Subjects performed 35-min exercise bouts at 60% of their maximal oxygen consumption under placebo or after oral tertatolol [a beta-adrenergic receptor (AR) antagonist]. Under placebo, exercise increased dialysate glycerol concentration (DGC) in both groups. Phentolamine (alpha-AR antagonist) potentiated exercise-induced lipolysis in overweight but not in lean subjects; the alpha(2)-antilipolytic effect was only functional in overweight men. After tertatolol administration, the DGC increased similarly during exercise no matter which was used probe in both groups. Compared with the control probe under placebo, lipolysis was reduced in lean but not in overweight men treated with the beta-AR blocker. Tertatolol reduced plasma nonesterified fatty acids and insulin concentration in both groups at rest. Under placebo or tertatolol, the exercise-induced changes in plasma nonesterified fatty acids, glycerol, and insulin concentrations were similar in both groups. Exercise promoted a higher increase in catecholamine and ANP plasma levels after tertatolol administration. In conclusion, the major finding of our study is that in overweight men, in addition to an increased alpha(2)-antilipolytic effect, the lipid mobilization in subcutaneous adipose tissue that persists during exercise under beta-blockade is not dependent on catecholamine action. On the basis of correlation findings, it seems to be related to a concomitant exercise-induced rise in plasma ANP when exercise is performed under tertatolol intake and a decrease in plasma insulin.
Besides exerting its own lipolytic effect, growth hormone (GH) has been reported to potentiate the lipolytic response of adipose tissue to epinephrine. It was thought interesting to find out whether long-term recombinant human growth hormone (rhGH) administration modifies epinephrine-induced lipolysis in isolated adipocytes of GH-deficient adults. In a double-blind protocol, GH-deficient subjects received either 6 mo placebo (controls, n = 5) or 6 mo rhGH (treated, n = 5). Biopsies of fat were obtained from the periumbilical region before and after placebo or rhGH administration. The response of the collagenase-isolated fat cells to various concentrations of epinephrine was assessed by glycerol release, measured by bioluminescence. Epinephrine-induced lipolysis was not altered by 6 mo placebo, while it was significantly increased by 6 mo rhGH. A similar response was obtained with isoproterenol, but no significant differences occurred in either group with UK 14304, an alpha 2-adrenoreceptor agonist. Thus, in GH-deficient adults, long-term rhGH administration improves the lipolytic response of isolated adipocytes to epinephrine, essentially by increasing the efficiency of the beta-adrenergic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.