The biological activity of the edible basidiomycete Antrodia cinnamomea (AC) has been studied extensively. Many effects, such as anti-cancer, anti-inflammatory, and antioxidant activities, have been reported from either crude extracts or compounds isolated from AC. However, research addressing the function of AC in enhancing immunity is rare. The aim of the present study is to investigate the active components and the mechanism involved in the immunostimulatory effect of AC. We found that polysaccharides (PS) in the water extract of AC played a major role in dendritic cell (DC) activation, which is a critical leukocyte in initiating immune responses. We further size purified and identified that the high-molecular weight PS fraction (greater than 100 kDa) exhibited the activating effect. The AC high-molecular weight PSs (AC hmwPSs) promoted pro-inflammatory cytokine production by DCs and the maturation of DCs. In addition, DC-induced antigen-specific T cell activation and Th1 differentiation were increased by AC hmwPSs. In studying the molecular mechanism, we confirmed the activation of the MAPK and NF-κB pathways in DCs after AC hmwPSs treatment. Furthermore, we demonstrated that TLR2 and TLR4 are required for the stimulatory activity of AC hmwPSs on DCs. In a mouse tumor model, we demonstrated that AC hmwPSs enhanced the anti-tumor efficacy of the HER-2/neu DNA vaccine by facilitating specific Th1 responses. Thus, we conclude that hmwPSs are the major components of AC that stimulate DCs via the TLR2/TLR4 and NF-κB/MAPK signaling pathways. The AC hmwPSs have potential to be applied as adjuvants.
Astaxanthin, a xanthophyll belonging to the family of carotenoids, is a potent antioxidant. However, much less is known about its protective effects on the oxidative stress of ischemic optic nerve. We hypothesized that astaxanthin treatment could protect retinal ganglion cells (RGCs) from death via anti-oxidative and anti-apoptotic responses. Adult male Wistar rats were fed astaxanthin (100 mg/kg/day) by daily gavage for seven consecutive days, either before or after inducing oxidative stress in the retina by photodynamic treatment. The visual function, RGC apoptosis, macrophage infiltration in the optic nerve, expression of p-Akt, p-mTOR, SGK1, pS6K, Nrf2, p62, TNFα, Il1β in retinas were investigated. The visual function and the RGC densities were significantly higher in both pre- and post-treatment groups. The numbers of apoptotic RGCs and extrinsic macrophage infiltration in the optic nerve were significantly decreased in both astaxanthin-treated groups. Furthermore, pre- and post-treatment of astaxanthin showed a higher expression of p-Akt, p-mTOR, Nrf2 and superoxide dismutase activity, and a lower expression of cleaved caspase-3, suggesting anti-apoptotic and anti-oxidative roles. Our findings indicate that astaxanthin can preserve visual function and reduce RGC apoptosis after ischemic insults. Including astaxanthin in daily diet as a supplement may be beneficiary for ischemic optic neuropathy.
This work presents the effects of feruloylated oligosaccharides (FOs) of rice bran on murine bone marrow-derived dendritic cells (BMDCs) and the potential pathway through which the effects are mediated. We found that FOs induced phenotypic maturation of DCs, as shown by the increased expression of CD40, CD80/CD86 and MHC-I/II molecules. OPEN ACCESS Molecules 2014, 19 5326FOs efficiently induced maturation of DCs generated from C3H/HeN or C57BL/6 mice with normal toll-like receptor 4 (TLR-4) or TLR-2 but not DCs from mice with mutated TLR4 or TLR2. The mechanism of action of FOs may be mediated by increased phosphorylation of ERK, p38 and JNK mitogen-activated protein kinase (MAPKs) and increased NF-B activity, which are important signaling molecules downstream of TLR-4 and TLR-2. These data suggest that FOs induce DCs maturation through TLR-4 and/or TLR-2 and that FOs might have potential efficacy against tumor or virus infection or represent a candidate-adjuvant approach for application in immunotherapy and vaccination.
Dietary compounds in fruits and vegetables have been shown to exert many biological activities. In addition to antioxidant effects, a number of flavonoids are able to modulate inflammatory responses. Here, we demonstrated that phloretin (PT), a natural dihydrochalcone found in many fruits, suppressed the activation and function of mouse dendritic cells (DCs). Phloretin disturbed the multiple intracellular signaling pathways in DCs induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS), including ROS, MAPKs (ERK, JNK, p38 MAPK), and NF-κB, and thereby reducing the production of inflammatory cytokines and chemokines. Phloretin also effectively suppressed the activation of DCs treated with different dosages of LPS or various TLR agonists. The LPS-induced DC maturation was attenuated by phloretin because the expression levels of the MHC class II and the co-stimulatory molecules were down-regulated, which then inhibited the LPS-stimulating DCs and the subsequent naïve T cell activation in a mixed lymphocyte reaction. Moreover, in vivo administration of phloretin suppressed the phenotypic maturation of the LPS-challenged splenic DCs and decreased the IFN-γ production from the activated CD4 T cells. Thus, we suggest that phloretin may potentially be an immunomodulator by impairing the activation and function of DCs and phloretin-contained fruits may be helpful in the improvement of inflammation and autoimmune diseases.
Alpinia oxyphylla is a traditional Chinese medicine widely used for treating diarrhea, ulceration, and enuresis. Moreover, A. oxyphylla is effective for cognitive function improvement and nerve regeneration. Multiple sclerosis (MS) is a chronic neuronal inflammatory autoimmune disease that commonly affects young adults in high-latitude regions. The aim of this study was to evaluate the beneficial effects of A. oxyphylla in an experimental autoimmune encephalomyelitis (EAE) mouse model, which is an extensively used model for human MS. The ethanolic extract of A. oxyphylla fruit (AO-1) was orally administered to EAE mice. Our results showed AO-1 significantly reduced EAE symptoms. Histopathological analysis showed AO-1 reduced demyelination, inflammation, gliosis, and axonal swelling in the spinal cord. Furthermore, immunohistochemistry and quantitative polymerase chain reaction (qPCR) studies revealed that the infiltration of CD4+, CD8+ T cells, and CD11b+ monocytes into the spinal cord decreased in the AO-1-treated group. Mechanistically, the Th1 transcription factor T-bet, Th17 transcription factor retinoic acid receptor–related orphan receptor γ (RORγt), and inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17 were reduced in the spinal cords of mice treated with AO-1. The expression levels of T-bet and RORγt were also lowered in the spleens of those mice. Further in vitro study showed AO-1 inhibited production of IFN-γ, IL-2, and tumor necrosis factor-α from MOG35-55-peptide-stimulated splenocytes. One component isolated from AO-1, yakuchinone A, inhibited IL-17 production in vitro and reduced EAE symptoms in the mice. Collectively, our results indicate that AO-1 ameliorated the severity of EAE in mice and may involve the regulation of Th1/Th17 response. A. oxyphylla warrants further investigation, particularly regarding its clinical benefits for MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.