The thermal stresses and deflections in hot rolled steel beams can be modelled by using a finite element approximation to the threedimensional case based on two dimensional analysis. This is significant because a finite element model of thermal stress in a long beam would require very long computational times in the general case. An iterative method is employed in early analyses [1...5]. The problem is considered one-dimenssional -the transverse stresses are neglected and the longitudinal stress only is computed. This approximation can result in significant errors when the magnitude of the transverse stresses is comparable with that of the longitudinal stress. Such is the case in industrial practice for instance in accelerated water cooling of channels or air cooling of rails after hot rolling. One of the most comprehensive simplified finite element thermal stress analyses of hot rolled beams of complex cross sectional geometry is that offered by Abouaf, Marcelin and Chenot [6;7]. Initially, generalised plane strain was assumed and two additional parameters, namely the curvature and a unit deformation of the fibre at the origin of the coordinate system, were included directly in the solution. The above method requires solution of a system of equations in which the stiffness matrix has to be utilised on three occasions. This is computationally expensive, because usually 80% or more of the total solution time is used for solving the system of equations in which the stiffness matrix participates. In this paper the iterative method described in [1,..5] is extended to include the transverse stresses in the analysis. In addition material nonlinearity is taken into account by using the von Mises' plasticity theory. The system of equations is solved only once for an increment of stress in the elastic range. The present paper offers a comparison between the two procedures. Vergleich zweier Methoden zur Berechnung der Warmespannungen in warmgewalzten Tragern. Die Warmespannungen und Durchbiegungen in warmgewalzten Stahltraqern konnen mit finiten Elementen modelliert werden. Dabei laBt slch der dreidimensionale Fall auf der Basis einer zweidimensionalen Analyse naherunqswelsa darstellen. Das ist deshalb bedeutend, weil ein FE-Modell der Warmespannungen in einem langen Trager sehr viel Rechenzeit in Anspruch nehmen wOrde. FrOherbenutzte man iterative Methoden [1...5]. Das Problem wird eindimensional betrachtet, Spannungen in Querrichtung werden vernachlasslqt und allein die Langsspannung wird berechnet. Eine solche Naherung kann zu betrachtlichen Fehlern fOhren, wenn die GroBenordnung der Spannungen quer zur Lanqsachsa mit der der Langsspannung vergleichbar ist. Genau das ist aber in der betrieblichen Praxis der Fall, z.B. bei beschleunigter WasserkOhlung bestimmter Profile oder LuftkOhlung von Schienen nach dem Warmwalzen. Eine der einfachsten Warmespannungsanalysen mit finiten Elemente, die sich auf warmgewalzte Trager mit komplexen Querschnitten anwenden laBt, ist das Verfahren, das Abouaf, Marcelin und Chenot vorschlagen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.