We report measurements on ropes of single-walled carbon nanotubes (SWNT) in low-resistance contact to nonsuperconducting (normal) metallic pads, at low voltage and at temperatures down to 70 mK. In one sample, we find a 2 orders of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic field of the order of 1 T, or by a dc current greater than 2.5 microA. These features strongly suggest the existence of superconductivity in ropes of SWNT.
Proximity-induced superconductivity in single-walled carbon nanotubes below 1 kelvin, both in a single tube 1 nanometer in diameter and in crystalline ropes containing about 100 nanotubes, was observed. The samples were suspended between two superconducting electrodes, permitting structural study in a transmission electron microscope. When the resistance of the nanotube junction is sufficiently low, it becomes superconducting and can carry high supercurrents. The temperature and magnetic field dependence of the critical current of such junctions exhibits unusual features related to their strong one-dimensional character.
The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current–phase relation. The sharp sawtooth-shaped phase-modulated current–phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
We report low-temperature transport measurements on suspended single-walled carbon nanotubes ͑both individual tubes and ropes͒. The technique we have developed, where tubes are soldered on low-resistive metallic contacts across a slit, enables a good characterization of the samples by transmission electron microscopy. It is possible to obtain individual tubes with a room-temperature resistance smaller than 40 k⍀, which remain metallic down to very low temperatures. When the contact pads are superconducting, nanotubes exhibit proximity-induced superconductivity with surprisingly large values of supercurrent. We have also recently observed intrinsic superconductivity in ropes of single-walled carbon nanotubes connected to normal contacts, when the distance between the normal electrodes is large enough, since otherwise superconductivity is destroyed by ͑inverse͒ proximity effect. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsive interactions at low temperature, and enable investigation of superconductivity in a one-dimensional limit never explored before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.