This paper presents the results of the experimental research on the electrical characteristics of two dissimilar thermoelectric power sources. Chromel-alumel and nichrome-constantan are the investigated types of thermocouples that are utilized as thermopower sources. Through the assistance of the collected data, experimental and theoretical studies of two equivalent thermopower sources are done. The first studied source is obtained by a parallel connection of the two types of thermocouples, and the second studied source is achieved by the parallel connection of two thermocouples of nichrome-constantan and a single thermocouple made of chromel-alumel. Theoretical studies of the two equivalent thermoelectric sources proved good repeatable precision of the studied results of experimental measurements.
Abstract. This paper demonstrates the outcome of experimental studies on thermoelectric characteristics of thermocouples. Measurements were carried out using different types of thermocouples; each studied alone then investigated when they are connected in parallel, in order to simulate the imperfect nature of the various multi-contact surface of the tested object. The investigated types were Chromel-Alumel and Nichrome-Constantan. The thermoelectric characteristics were measured at the temperature range 160° -400° Celsius, in order to identify the best operating temperature for the hot electrode. Furthermore, the load resistance is another important factor that has been investigated and therefore varied from 1Ω to 10kΩ, in order to determine its effect on the electrical characteristics of thermocouples. Accordingly, these characteristics will help defining the requirements for an optimum thermoelectric testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.