The present paper compares, for the first time, the regimes of a pulsating turbulent flow in a smooth pipe in terms of 0.001 ≤ ω+ ≤ 0.0346 and 0.16 ≤ β ≤ 0.63 at Re ≈ 7000 with the uncertainty in estimating the flow rate by an ultrasonic flowmeter. It was revealed that the classification of pulsating flow regimes according to the dimensionless angular frequency ω+ does not have a direct relation with the K parameter equal to the ratio of the phase-average calibration constant in pulsating flow to the corresponding value in steady flow. The results of data processing showed that K depends on the relative amplitude of pulsations β and the position of the chord of the ultrasonic beam trajectory (L/R is distance L from the pipe center to the chord to the pipe radius R). In the coordinates β and L/R, there is a rather wide area where the uncertainty in flow rate estimation of pulsating flows should not exceed 0.5%. An increase in β or L/R leads to an increase in measurement uncertainty, which in the limiting case β, L/R → 1 can reach 5% or more. Favorable and unfavorable areas of the pipe section were identified when scanning pulsating flows and the effectiveness of using multi-path scanning schemes was estimated to reduce the resulting effect of flow pulsations on flow measurement uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.