This study attempts to find out the best-fit probability distribution function to low flows using the up-to-date data of intermittent and non-intermittent rivers in four hydrological basins from different regions in Turkey. Frequency analysis of D = 1-, 7-, 14-, 30-, 90- and 273-day low flows calculated from the daily flow time series of each stream gauge was performed. Weibull (W2), Gamma (G2), Generalized Extreme Value (GEV) and Log-Normal (LN2) are selected among the 2-parameter probability distribution functions together with the Weibull (W3), Gamma (G3) and Log-Normal (LN3) from the 3-parameter probability distribution function family. Selected probability distribution functions are checked for their suitability to fit each D-day low flow sequence. LN3 mostly conforms to low flows by being the best-fit among the selected probability distribution functions in three out of four hydrological basins while W3 fits low flows in one basin. With the use of the best-fit probability distribution function, the low flow-duration-frequency curves are determined, which have the ability to provide the end-users with any D-day low flow discharge of any given return period.
The three-dimensional transition of the flow behind a circular cylinder with a near-wake wire disturbance has been investigated experimentally. The asymmetric placement of a wire in the near-wake region of the cylinder causes an unnatural mode of shedding to occur, namely mode C. We performed flow visualization and particle image velocimetry (PIV) experiments to investigate the influence of the wire on various properties of the flow, such as the dynamics of the streamwise secondary vortices. Experiments were performed at the Reynolds number range of Re = 165-300. From these experiments, it can be concluded that mode C structures are formed as secondary streamwise vortices around the primary von Kármán vortices. The spanwise wavelength of those mode C structures is determined to be approximately two cylinder diameters. The presence of the wire also triggered the occurrence of period doubling in the wake. Each new set of mode C structures is out of phase with the previous set, i.e. doubling the shedding period. This period-doubling phenomenon is due to a feedback mechanism between the consecutively shed upper vortices.
A methodology using the standardised precipitation index is proposed to develop critical drought intensity-duration-frequency (IDF) curves. We define dry periods within which we recognise droughts of different durations. The most severe drought for each drought duration in each year is called the critical drought. The total probability theorem-coupled frequency analysis is used to determine the bestfit probability distribution function of drought severity, which is then converted to intensity. The generalised extreme value probability distribution function is found to best fit the critical drought severity. The methodology is implemented using monthly precipitation data for a meteorological station in Turkey. The critical drought intensity decreases linearly with increasing drought duration, whereas the return period increases exponentially when the drought becomes more severe. The site-specific IDF curves furnished with an empirical relationship between the intensity and return period allow one to characterise the drought not by an index-based intensity but by its return period. This kind of presentation is physically easier to understand, in particular for stakeholders and decision makers in practice.
The effect of a thin control wire on the wake properties of the flow around a circular cylinder has been investigated numerically. The governing equations are solved using a spectral element method for a Reynolds number of ReD=100. The diameter ratio of the main cylinder and the wire equals D/d=50 so no vortex shedding is expected to occur for the wire. However, the vorticity introduced by the wire in the vicinity of the upper shear layer of the cylinder still affects the vortex dynamics in the wake of the main cylinder. The primary effect of the wire is the reduction of the velocity fluctuations in the vortex formation region of the main cylinder. The maximum decrement occurs at a wire position of yw/D=0.875. The secondary effect of the wire is observed in the kinematics of the vortices, leading to a modified vortex arrangement and strength difference between the upper and lower vortices. Due to these effects, for yw/D≤0.875, a downward wake deflection is observed, while for larger values of yw/D>0.875, an upward deflection is found. The maximum downward deflection occurs at wire position yw/D=0.75 where the maximum positive mean lift coefficient, minimum drag coefficient, and minimum fluctuating lift coefficient are seen. Based on the observations, it is concluded that the deflection of the wake is primarily caused by a modification of the vortex arrangement in the wake. This modified vortex arrangement is caused by different formation times of the upper and lower vortices, by different vortex strengths, or by both.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.