The aim of this paper is to elaborate the performance of Simulated Annealing (SA) algorithm for solving traveling salesmen problems. In this paper, SA algorithm is modified by using the interaction between outer and inner loop of algorithm. This algorithm produces low standard deviation and fast computational time compared with benchmark algorithms from several research papers. Here SA uses a certain probability as indicator for finding the best and worse solution. Moreover, the strategy of SA as cooling to temperature ratio is still given. Thirteen benchmark cases and thirteen square grid symmetric TSP are used to see the performance of the SA algorithm. It is shown that the SA algorithm has promising results in finding the best solution of the benchmark cases and the squared grid TSP with relative error 0 - 7.06% and 0 – 3.31%, respectively. Further, the SA algorithm also has good performance compared with the well-known metaheuristic algorithms in references.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.