A methodology has been developed for the quantitative assessments of the individual effects of precipitation and chelation of metal ions in an anaerobic digester.
The relative importance of the individual effects of precipitation and chelation of metal ions in anaerobic digestion is assessed. Experimentally determined soluble metal ion levels are compared with predicted levels obtained by using a previously described methodology.(1) It is found that soluble metal complexes may increase the level of soluble metals in the presence of CO(3) (2-) and S(2-) by a factor of up to 10(4). The formation of a soluble complex may increase or decrease the availability of the metal ion in question for microbial uptake. Two case studies are presented, one using a defined medium and one a complex medium. It is possible, in the case of the defined medium, to accurately predict the free metal ion concentration using the methodology previously developed.(1) While the identification of the presence of natural chelating compounds in a complex medium is not routinely possible, the significant discrepancy between the measured level of the soluble metal ion Fe(2+) and the calculated level in the case studies presented indicates that natural chelating compounds may play a vital role in providing available metal ions to the microorganisms of an anaerobic digester.
Semicontinuous digesters were used to anaerobically treat high-strength whey (70 kg/m(3).COD). A maximum loading of 16.1 kg COD/m(3).day was obtained with soluble COD removal efficiencies greater than 99%. The use of a chemical flocculant resulted in an increased biomass concentration in the digester compared to a control, thus enabling correspondingly higher space loadings to be applied. With the onset of substantial levels of granulation of the biomass, flocculant dosage was able to be discontinued. This article discusses the performance of the digesters in detail and, briefly, the long-term operational difficulties experienced and the control strategies employed on such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.