A near real-time flood detection algorithm giving a synoptic overview of the extent of flooding in both urban and rural areas, and capable of working during night-time and daytime even if cloud was present, could be a useful tool for operational flood relief management. The paper describes an automatic algorithm using high resolution Synthetic Aperture Radar (SAR) satellite data that builds on existing approaches, including the use of image segmentation techniques prior to object classification to cope with the very large number of pixels in these scenes. Flood detection in urban areas is guided by the flood extent derived in adjacent rural areas. The algorithm assumes that high resolution topographic height data are available for at least the urban areas of the scene, in order that a SAR simulator may be used to estimate areas of radar shadow and layover. The algorithm proved capable of detecting flooding in rural areas using TerraSAR-X with good accuracy, classifying 89% of flooded pixels correctly, with an associated false 2 positive rate of 6%. Of the urban water pixels visible to TerraSAR-X, 75% were correctly detected, with a false positive rate of 24%. If all urban water pixels were considered, including those in shadow and layover regions, these figures fell to 57% and 18% respectively.
Airborne LiDAR (Light Detection and Ranging) is a remote sensing technology that offers the ability to collect high horizontal sampling densities of high vertical resolution vegetation height data, over larger spatial extents than could be obtained by field survey. The influence of vegetation structure on the bird is a key mechanism underlying bird-habitat models. However, manual survey of vegetation structure becomes prohibitive in terms of time and cost if sampling needs to be of sufficient density to incorporate fine-grained heterogeneity at a landscape extent. We show that LiDAR data can help bridge the gap between grain and extent in organism-habitat models. Two examples are provided of bird-habitat models that use structural habitat information derived from airborne LiDAR data. First, it is shown that data on crop and field boundary height can be derived from LiDAR data, and so have the potential to predict the distribution of breeding Sky Larks in a farmed landscape. Secondly, LiDAR-retrieved canopy height and structural data are used to predict the breeding success of Great Tits and Blue Tits in broad-leaved woodland. LiDAR thus offers great potential for parameterizing predictive bird-habitat association models. This could be enhanced by the combination of LiDAR data with multispectral remote sensing data, which enables a wider range of habitat information to be derived, including both structural and compositional characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.