Sulphuric acid dehusked barley had a higher germinative energy and lower microbial infection than normal huskless (naked) barley, suggesting that the pericarp layer harboured microbial infection which may have limited the germination rate. Dehusking the normal huskless barley using sulphuric acid resulted in lower microbial infection, and increased germinative energy. The normal huskless barley sample had a higher b-glucan content than the acid-dehusked barley and had slower b-glucan breakdown during malting. This resulted in the release of seven times more b-glucan during mashing, and the production of wort of higher viscosity. The normal huskless barley sample had a higher total nitrogen content than the acid-dehusked barley but both samples produced similar levels of amylolytic (a-and b-amylase) activity over the same malting period. No direct correlation was found between barley total nitrogen level and the amylolytic activity of the malt. When barley loses its husk at harvest, the embryo is exposed and may be damaged. This may result in uneven germination which can reduce malting performance and hence malt quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.