Summary. The assumption that a liquid adheres to a solid boundary ("no-slip" boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this paper we investigate the consequences of slip at the wall on the flow of a linearly viscous fluid in a channel. Usually, the slip is assumed to depend on the shear stress at the wall. However, a number of experiments suggests that the slip velocity also depends on the normal stress. Thus, we investigate the flow of a linearly viscous fluid when the slip depends on both the shear stress and the normal stress. In regions where the slip velocity depends strongly on the normal stress, the flow field in a channel is not fully developed and rectilinear flow is not possible. Also, it is shown that, in general, traditional methods such as the Mooney method cannot be used for calculating the slip velocity.
Shape memory polymers are novel materials that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such as heating. In this paper, we develop constitutive equations to model the mechanical behavior of crystallizable shape memory polymers. Crystallizable shape memory polymers are called crystallizable because the temporary shape is fixed by a crystalline phase, while return to the original shape is due to the melting of this crystalline phase. The modeling is done using a framework that was developed recently for studying crystallization in polymers ([28], [25], [27], [31]) and is based on the theory of multiple natural configurations. In this paper we formulate constitutive equations for the original amorphous phase and the semi-crystalline phase that is formed after the onset of crystallization. In addition we model the melting of the crystalline phase to capture the return of the polymer to its original shape. The model has been used to simulate a typical uni-axial cycle of deformation, the results of this simulation compare very well with experimental data. In addition to this we also simulate circular shear of a hollow cylinder and present results for different cases in this geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.