This study aimed to investigate the perceived work stress and its influencing factors among hospital staff during the novel coronavirus (COVID‐19) pandemic in Taiwan. A web‐based survey was conducted at one medical center and two regional hospitals in southern Taiwan, targeting physicians, nurses, medical examiners, and administrators. The questionnaire included items on the demographic characteristics of hospital staff and a scale to assess stress among healthcare workers caring for patients with a highly infectious disease. A total of 752 valid questionnaires were collected. The hospital staff reported a moderate level of stress and nurses had a highest level of stress compared to staff in the other three occupational categories. The five highest stress scores were observed for the items “rough and cracked hands due to frequent hand washing and disinfectant use,” “inconvenience in using the toilet at work,” “restrictions on eating and drinking at work,” “fear of transmitting the disease to relatives and friends,” and “fear of being infected with COVID‐19.” Discomfort caused by protective equipment was the major stressor for the participants, followed by burden of caring for patients. Among participants who experienced severe stress (n = 129), work stress was higher among those with rather than without minor children. The present findings may serve as a reference for future monitoring of hospital staff's workload, and may aid the provision of support and interventions.
Coronaviruses (CoVs) consist of six strains, and the severe acute respiratory syndrome coronavirus (SARS-CoV), newly found coronavirus (SARS-CoV-2) has rapidly spread leading to a global outbreak. The ferret ( Mustela putorius furo) serves as a useful animal model for studying SARS-CoV/SARS-CoV-2 infection and developing therapeutic strategies. A holistic approach for distinguishing differences in gene signatures during disease progression is lacking. The present study discovered gene expression profiles of short-term (3 days) and long-term (14 days) ferret models after SARS-CoV/SARS-CoV-2 infection using a bioinformatics approach. Through Gene Ontology (GO) and MetaCore analyses, we found that the development of stemness signaling was related to short-term SARS-CoV/SARS-CoV-2 infection. In contrast, pathways involving extracellular matrix and immune responses were associated with long-term SARS-CoV/SARS-CoV-2 infection. Some highly expressed genes in both short- and long-term models played a crucial role in the progression of SARS-CoV/SARS-CoV-2 infection, including DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6 , and ACADM. Meanwhile, we revealed that metabolic, glucocorticoid, and reactive oxygen species-associated networks were enriched in both short- and long-term infection models. The present study showed alterations in gene expressions from short-term to long-term SARS-CoV/SARS-CoV-2 infection. The current result provides an explanation of the pathophysiology for post-infectious sequelae and potential targets for treatment.
The endoplasmic reticulum (ER) is an organelle involved in various physiological processes such as lipid metabolism, protein synthesis and folding, and cellular calcium storage. In a physiological tumor microenvironment, hypoxia, nutrient deprivation, and calcium dysregulation cause accumulation of unfolded and misfolded proteins. Such accumulation induces ER stress and unfolded protein responses (UPRs). Increased UPR signaling pathways are associated with multiple types of cancer. The influence of ER stress on acyl‑CoA metabolic enzymes is not well understood. Evaluation of PRECOG and Kaplan‑Meier plotter databases in the present study suggested that high expression of acyl‑CoA thioesterase (ACOT)7, ACOT11, ACOT13, soluble carrier family 27 member A4 (SLC27A4) and SLC27A5 was associated with poor clinical outcomes. In addition, expression levels of ACOT7, ACOT11, SLC27A4 and SLC27A5 were not altered after induction of ER stress. By contrast, expression of some enzymes was decreased, such as those of long‑chain acyl‑CoA synthetase (ACSL)3, ACSL4 and SLC27A2. Fatty acid uptake capacity was suppressed in lung cancer cell lines A549 and CL1‑0 after thapsigargin treatment but intracellular reactive oxygen species levels were not suppressed. Gene enrichment and regulatory element analysis were performed; the results provided potential targets for further investigation. On the whole, our findings demonstrate the potential regulatory mechanism of high‑expression of acyl‑CoA metabolic enzymes, the biological effects of decreased enzyme expression levels, possible regulatory elements, and the interaction network involved in responses to ER stress in lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.