Sclerotinia sclerotiorum and Diaporthe helianthi are important pathogens of sunflower ( Helianthus annuus L.). Two hundred and twenty F2-F3 families were developed from an intraspecific cross between two inbred sunflower lines XRQ and PSC8. Using this segregating population a genetic map of 19 linkage groups with 290 molecular markers covering 2,318 cM was constructed. Disease resistances were measured in field experiments during 3 years (1998, 1999 and 2000) for phomopsis and 2 years for S. sclerotiorum (1997 and 1999). QTL were detected using the interval mapping method at a LOD threshold of 3. A total of 15 QTL for each pathogen resistance were detected across several linkage groups, confirming the polygenic nature of the resistances. These QTL explained from 7 to 41% of the phenotypic variability. The QTL for phomopsis resistance, in the 3 years of tests, mapped in the same region, and this was also true for some forms of S. sclerotiorum resistance in the 2 years of tests. On linkage group 8, QTL affecting resistance to both S. sclerotiorum and D. helianthi mycelium extension on leaves colocalised, suggesting a common component in the mechanism of resistance for these two pathogens. The colocalisation of QTL and breeding for resistance to S. sclerotiorum and to D. helianthi by pyramiding QTL in sunflower are discussed.
Seed weight and oil content are important properties of cultivated sunflower under complex genetic and environmental control, and associated with morphological and developmental characteristics such as plant height or flowering dates. Using a genetic map with 290 markers for a cross between two inbred sunflower lines and 2 years of observations on F3 families, QTL controlling seed weight, oil content, plant height, plant lodging, flowering dates, maturity dates and delay from flowering to maturity were detected. QTL detected were compared between the F2 and F3 generations and between the 2 years of testing for the F3 families in 1997 and 1999. Some of the QTL controlling seed weight overlapped with those controlling oil content. Several other co-localisations of QTL controlling developmental or morphological characteristics were observed and the relationships between the traits were also shown by correlation analyses. The relationships between all these traits and with resistance to Sclerotinia sclerotiorum and Diaporthe helianthi are discussed.
One hundred and fifty F(2)-F(3) families from a cross between two inbred sunflower lines FU and PAZ2 were used to map quantitative trait loci (QTL) for resistance to white rot (Sclerotinia sclerotiorum) attacks of terminal buds and capitula, and black stem ( Phoma macdonaldii). A genetic linkage map of 18 linkage groups with 216 molecular markers spanning 1,937 cM was constructed. Disease resistances were measured in field experiments for S. sclerotiorum and under controlled conditions for P. macdonaldii. For resistance to S. sclerotiorum terminal bud attack, seven QTL were identified, each explaining less than 10% of phenotypic variance. For capitulum attack by this parasite, there were four QTL (each explaining up to 20% of variation) and for P. macdonaldii resistance, four QTL were identified, each having effects of up to 16%. The S. sclerotiorum capitulum resistance QTL were compared with those reported previously and it was concluded that resistance to this disease is governed by a considerable number of QTL, located on almost all the sunflower linkage groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.