The RIG-I receptors RIG-I, MDA5 and LGP2 are involved in viral recognition, and they have different ligand specificity and recognize different viruses. Activation of RIG-I-like receptors (RLRs) leads to production of cytokines essential for antiviral immunity. In fish, most research has focused on interferons, and less is known about the production of proinflammatory cytokines during viral infections. In this study, we have cloned the full-length MDA5 sequence in Atlantic salmon, and compared it with RIG-I and LGP2. Further, the salmonid cell line TO was infected with three fish pathogenic viruses, infectious pancreatic necrosis virus (IPNV), infectious salmon anaemia virus (ISAV) and salmonid alphavirus (SAV), and differential gene expression (DEG) analyses of RLRs, interferons (IFNa-d) and proinflammatory cytokines (TNF-α1, TNF-α2, IL-1β, IL-6, IL-12 p40s) were performed. The DEG analyses showed that the responses of proinflammatory cytokines in TO cells infected with IPNV and ISAV were profoundly different from SAV-infected cells. In the two aforementioned, TNF-α1 and TNF-α2 were highly upregulated, while in SAV-infected cells these cytokines were downregulated. Knowledge of virus recognition by the host and the immune responses during infection may help elucidate why and how some viruses can escape the immune system. Such knowledge is useful for the development of immune prophylactic measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.