Predicting the sealing capacity of faults and caprocks has been a long-standing uncertainty for those involved in the exploration, appraisal and development of petroleum reservoirs. In more recent years, interest in the topic has increased in a wide range of other applications, particularly those related to the decarbonization of our energy supply such as carbon capture and storage (CCS), radioactive waste disposal, geothermal energy production and underground energy storage (e.g. compressed air, hydrogen). Knowledge of how faults impact fluid flow is also important for management of drinking water supplies. To communicate new advances in research in these areas, the EAGE organized the first international conference on Fault and Top Seals in 2003. These conferences have continued to be held at roughly 4 yearly intervals and have brought together scientists from a wide range of disciplines to discuss new research findings and workflows relevant to predicting fault and top seal behaviour, as well as presenting case studies covering both successful and unsuccessful attempts to predict sealing capacity.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019
A significant knowledge gap exists when analysing and predicting the hydraulic behaviour of faults within carbonate reservoirs. To improve this, a large database of carbonate fault rock properties has been collected from 42 exposed faults, from 7 countries. Faults analysed cut a range of lithofacies, tectonic histories, burial depths and displacements. Porosity and permeability measurements from c.400 samples have been made, with the goal of identifying key controls on the flow properties of fault rocks in carbonates. Intrinsic and extrinsic factors have been examined, such as host lithofacies, juxtaposition, host porosity and permeability, tectonic regime, displacement, maximum burial depth as well as the depth at the time of faulting. The results indicate which factors may have the most significant influence on fault rock permeability, improving our ability to predict the sealing or baffle behaviour of faults in carbonate reservoirs. Intrinsic factors, such as host porosity, permeability and texture, appear to play the most important role in fault rock development. Extrinsic factors, such as displacement and kinematics, have shown lesser or, in some instances, a negligible control on fault rock development. This conclusion is, however, subject to two research limitations: lack of sufficient data from similar lithofacies at different displacements, and a low number of samples from thrust regimes.Thematic collection: This article is part of the Fault and top seals collection available at: https://www.lyellcollection.org/cc/fault-and-top-seals-2019
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.