We suggest a scheme to implement a universal set of non-Abelian geometric
transformations for a single logical qubit composed of three superconducting
transmon qubits coupled to a single cavity. The scheme utilizes an adiabatic
evolution in a rotating frame induced by the effective tripod Hamiltonian which
is achieved by longitudinal driving of the transmons. The proposal is
experimentally feasible with the current state of the art and could serve as a
first proof of principle for geometric quantum computing.Comment: 7 pages, 5 figure
We derive an elegant solution for a two-level system evolving adiabatically under the influence of a driving field with a time-dependent phase, which includes open system effects such as dephasing and spontaneous emission. This solution, which is obtained by working in the representation corresponding to the eigenstates of the time-dependent Hermitian Hamiltonian, enables the dynamic and geometric phases of the evolving density matrix to be separated and relatively easily calculated.
We study adiabatic population transfer between discrete positions. Being
closely related to STIRAP in optical systems, this transport is coherent and
robust against variations of experimental parameters. Thanks to these
properties the scheme is a promising candidate for transport of quantum
information in quantum computing. We study the effects of spatially registered
noise sources on the quantum transport and in particular model Markovian
decoherence via non-local coupling to nearby quantum point contacts which serve
as information readouts. We find that the rate of decoherence experienced by a
spatial superposition initially grows with spatial separation but surprisingly
then plateaus. In addition we include non-Markovian effects due to couplings to
nearby two level systems and we find that although the population transport
exhibits robustness in the presence of both types of noise sources, the
transport of a spatial superposition exhibits severe fragility.Comment: 11page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.