The objective of this study was to determine the environmental and genetic factors affecting reproductive traits and calf survival from birth to weaning in Tswana breed of cattle. Analyses of environmental and genetic effects for calf survival traits were done using 7223 records of animals which were born between 1996 and 2013 from 1659 dams and 188 sires in 54 contemporaries. Analyses of environmental and genetic effects for age at first calving were done using 818 records of animals born between 1998 and 2013 from 611 dams and 136 sires in 49 contemporaries, while calving interval analyses were done using 1804 records of cows born between 1999 and 2013 from 496 dams and 121 sires in 45 contemporaries. Reproductive traits analysed were age at first calving (AFC) and calving interval (CI). AFC was analysed using univariate animal model while CI was analysed using repeatability model. Calf survival to weaning (CS) was analysed as a binomial trait using generalised mixed linear logistic model with logit as link function in the ASREML program. Significant environmental effects for reproductive traits were selection line, calving year and season. CS was significantly influenced by calf sex, selection line, calf-birth weight and dam age. The estimated heritability values for reproductive traits were 0.07±0.02 for CI and 0.10±0.07 for AFC. Heritability estimate obtained for CS was 0.07±0.05. Low genetic variability obtained in reproductive traits and calf survival to weaning trait indicates that improvement of these traits through genetic selection may prove to be slow.
The objective of this study is to estimate variance-covariance components and genetic parameters for growth traits in Tswana cattle. Genetic analyses for average daily gain (ADGs) and growth traits were conducted using 7223 records of animals which were born between 1996 and 2013 from 1662 dams and 188 sires in 54 contemporary groups. Both univariate and bivariate animal models were used. Heritability estimates for growth traits ranged from 0.12±0.03 for BWT to 0.45±0.03 for EWT while those obtained for ADGs were 0.24±0.03 and 0.31±0.04 for ADG1 and ADG2, respectively. Permanent maternal environmental effects were significant for WWT and ADG1. Substantial maternal genetic effects were observed in BWT, WWT and ADG1. Genetic correlations among growth traits and ADGs ranged from 0.19±0.07 between BWT and ADG1 to 0.99±0.02 between WWT and ADG1. Phenotypic correlations among growth traits and ADGs ranged from 0.19±0.01 between BWT and ADG1 to 0.94±0.01 between WWT and ADG1. The two selected lines significantly improved annual genetic gain for all the growth traits and ADG1. Genetic gain for EWT was optimally enhanced in S2 than in S1. The control line exhibited significant annual genetic gain in WWT which was not anticipated and perhaps attributed to asymmetry of selection response. Substantial genetic variations were observed in all growth traits and ADGs suggesting that growth improvement can be attained through selection for growth rate. High genetic correlations between growth traits and ADGs indicated that selection for one of these traits may result in indirect correlated response on the other traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.