High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of “synthetic data” in training ML algorithms for the detection of tuberculosis (TB) from inflammatory biomarker profiles. A retrospective dataset (A) comprised of 278 patients was used to generate synthetic datasets (B, C, and D) for training models prior to secondary validation on a generalization dataset. ML models trained and validated on the Dataset A (real) demonstrated an accuracy of 90%, a sensitivity of 89% (95% CI, 83–94%), and a specificity of 100% (95% CI, 81–100%). Models trained using the optimal synthetic dataset B showed an accuracy of 91%, a sensitivity of 93% (95% CI, 87–96%), and a specificity of 77% (95% CI, 50–93%). Synthetic datasets C and D displayed diminished performance measures (respective accuracies of 71% and 54%). This pilot study highlights the promise of synthetic data as an expedited means for ML algorithm development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.