The effects of three Ic antiarrhythmic drugs, flecainide, propafenone and cibenzoline, were investigated in anaesthetized, open-chest pigs, in a left ventricular area, during pacing at a constant high rate (180 beats min-1), in the absence and the presence of ischaemia. Ischaemia was produced by transient complete occlusion of the left anterior descending coronary artery 1-1.5 cm from its origin. In addition to surface electrocardiogram, conduction time and monophasic action potential were recorded in the contractile fibres. Measurement of the effective refractory period was added in the absence of ischaemia. In this event, flecainide and propafenone, each in a dose of 2.5 mg kg-1 i.v. and cibenzoline, 2.0 mg kg-1, i.v., considerably lengthened (by 50-90%) conduction time, but did not affect or hardly affected the duration of the monophasic action potential or the effective refractory period. Thus, it seems that these Ic antiarrhythmic drugs enhance the prolongation of conduction time by 60% and do not prevent the 30% shortening of monophasic action potential caused by ischaemia: contrary to expectation, they produced a large reduction (from about 120 to 25 s) in the onset time of fibrillation due to ischaemia. Thus, they manifested profibrillatory properties (more pronounced than those of other class I antiarrhythmic drugs), which might be explained by their potent action on depolarization with almost total absence of action on repolarization.
The effects of three antiarrhythmic drugs were investigated in anesthetized, open-chest pigs, in a left ventricular area, under pacing at a constant high rate (180 beats/min), in the absence and presence of ischemia. Ischemia was produced by transient complete occlusion of the left anterior descending coronary artery near its origin. In addition to the surface electrocardiogram, conduction time and monophasic action potential were recorded in the contractile fibers. In the absence of ischemia, intravenous flecainide and propafenone 2.5 mg/kg, and intravenous cibenzoline 2.0 mg/kg considerably lengthened conduction time (by 50-90%) but had no significant effect on the monophasic action potential duration. Consequently, the cited antiarrhythmic drugs enhance the prolongation of conduction time by 60% but do not limit the 30% shortening of the monophasic action potential caused by ischemia. Contrary to what was expected, they largely reduced the time to onset of the fibrillation due to ischemia from about 120 to 25 seconds. Thus, they manifested profibrillatory properties (more pronounced than those of other antiarrhythmic drugs of class I), which might be explained by their potent action on depolarization.
It is known that class I antiarrhythmic drugs lose their antifibrillatory activity with severe ischaemia, whereas class IV antiarrhythmic drugs acquire such activity. Tachycardia, which is also a depolarizing factor, has recently been shown to give rise to an alteration of ion transmembrane exchanges which is particularly marked in the case of calcium. This leads one to wonder if the change in antifibrillatory activity of antiarrhythmic drugs caused by ischaemia depends on the same process. The change in antifibrillatory activity was studied in normal conditions ranging to those of severe ischaemia with a class I antiarrhythmic drug, flecainide (1.00 mg x kg(-1) plus 0.04 mg x kg(-1)x min(-1), a sodium channel blocker, and a class IV antiarrhythmic drug, verapamil (50 microg x kg(-1) plus 2 microg x kg(-1) x min(-1)), a calcium channel blocker. The experiments were performed in anaesthetized, open-chest pigs. The resulting blockade of each of these channels was assessed at the end of ischaemic periods of increasing duration (30, 60, 120, 180, 300, and 420 s) by determining the ventricular fibrillation threshold (VFT). VFT was determined by means of trains of diastolic stimuli of 100 ms duration delivered by a subepicardial electrode introduced into the myocardium (heart rate 180 beats per min). Ischaemia was induced by completely occluding the left anterior descending coronary artery. The monophasic action potential was recorded concurrently for the measurement of ventricular conduction time (VCT). The monophasic action potential duration (MAPD) varied with membrane polarization of the fibres. The blockade of sodium channels by flecainide, which normally raises VFT (7.0 +/- 0.4 to 13.8 +/- 0.8 mA, p < 0.001) and lengthens VCT (28 +/- 3 to 44 +/- 5 ms, p < 0.001), lost its effects in the course of ischaemia. This resulted in decreased counteraction of the ischaemia-induced fall of VFT and decreased aggravation of the ischaemia-induced lengthening of VCT. The blockade of calcium channels, which normally does not alter VFT (between 7.2 +/- 0.6 and 8.4 +/- 0.7 mA, n.s.) or VCT (between 30 +/- 2 and 34 +/- 3 ms, n.s.), slowed the ischaemia-induced fall of VFT. VFT required more time to reach 0 mA, thus delaying the onset of fibrillation. Membrane depolarization itself was opposed as the shortening of MAPD and the lengthening of VCT were also delayed. Consequently there is a progressive decrease in the role played by sodium channels during ischaemia in the rhythmic systolic depolarization of the ventricular fibres. This reduces or suppresses the ability of sodium channel blockers to act on excitability or conduction, and increases the role of calcium channel blockers in attenuating ischaemia-induced disorders.
It is known that class I antiarrhythmic drugs lose their antifibrillatory activity with severe ischaemia, whereas class IV antiarrhythmic drugs acquire such activity. Tachycardia, which is also a depolarizing factor, has recently been shown to give rise to an alteration of ion transmembrane exchanges which is particularly marked in the case of calcium. This leads one to wonder if the change in antifibrillatory activity of antiarrhythmic drugs caused by ischaemia depends on the same process. The change in antifibrillatory activity was studied in normal conditions ranging to those of severe ischaemia with a class I antiarrhythmic drug, flecainide (1.00 mg x kg(-1) plus 0.04 mg x kg(-1)x min(-1), a sodium channel blocker, and a class IV antiarrhythmic drug, verapamil (50 microg x kg(-1) plus 2 microg x kg(-1) x min(-1)), a calcium channel blocker. The experiments were performed in anaesthetized, open-chest pigs. The resulting blockade of each of these channels was assessed at the end of ischaemic periods of increasing duration (30, 60, 120, 180, 300, and 420 s) by determining the ventricular fibrillation threshold (VFT). VFT was determined by means of trains of diastolic stimuli of 100 ms duration delivered by a subepicardial electrode introduced into the myocardium (heart rate 180 beats per min). Ischaemia was induced by completely occluding the left anterior descending coronary artery. The monophasic action potential was recorded concurrently for the measurement of ventricular conduction time (VCT). The monophasic action potential duration (MAPD) varied with membrane polarization of the fibres. The blockade of sodium channels by flecainide, which normally raises VFT (7.0 +/- 0.4 to 13.8 +/- 0.8 mA, p < 0.001) and lengthens VCT (28 +/- 3 to 44 +/- 5 ms, p < 0.001), lost its effects in the course of ischaemia. This resulted in decreased counteraction of the ischaemia-induced fall of VFT and decreased aggravation of the ischaemia-induced lengthening of VCT. The blockade of calcium channels, which normally does not alter VFT (between 7.2 +/- 0.6 and 8.4 +/- 0.7 mA, n.s.) or VCT (between 30 +/- 2 and 34 +/- 3 ms, n.s.), slowed the ischaemia-induced fall of VFT. VFT required more time to reach 0 mA, thus delaying the onset of fibrillation. Membrane depolarization itself was opposed as the shortening of MAPD and the lengthening of VCT were also delayed. Consequently there is a progressive decrease in the role played by sodium channels during ischaemia in the rhythmic systolic depolarization of the ventricular fibres. This reduces or suppresses the ability of sodium channel blockers to act on excitability or conduction, and increases the role of calcium channel blockers in attenuating ischaemia-induced disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.