A search for sub-GeV dark matter production mediated by a new vector boson A , called dark photon, is performed by the NA64 experiment in missing energy events from 100 GeV electron interactions in an active beam dump at the CERN SPS. From the analysis of the data collected in the years 2016, 2017, and 2018 with 2.84 × 10 11 electrons on target no evidence of such a process has been found. The most stringent constraints on the A mixing strength with photons and the parameter space for the scalar and fermionic dark matter in the mass range 1 GeV are derived. Thus, demonstrating the power of the active beam dump approach for the dark matter search.
We observe a signal for the doubly charmed baryon Xi(+)(cc) in the charged decay mode Xi(+)(cc)-->Lambda(+)(c)K-pi(+) in data from SELEX, the charm hadroproduction experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1+/-0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is 3519+/-1 MeV/c(2). The Gaussian mass width of this state is 3 MeV/c(2), consistent with resolution; its lifetime is less than 33 fs at 90% confidence.
The Small Area Tracking system of the COMPASS experiment at CERN includes a set of 20 large area, fast position-sensitive Gas Electron Multiplier (GEM) detectors, designed to reliably operate in the harsh radiation environment of the experiment. We describe in detail the design, choice of materials, assembly procedures and quality controls used to manufacture the devices. The test procedure in the laboratory, the performance in test beams and in the initial commissioning phase in the experiment are presented and discussed.
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.