The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/c π^{-} beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/c^{2} and 8.5 GeV/c^{2}. Within the experimental uncertainties, the observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of quantum chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic scattering (SIDIS) data. We present two other asymmetries originating from the pion Boer-Mulders TMD PDFs convoluted with either the nucleon transversity or pretzelosity TMD PDFs. A recent COMPASS SIDIS measurement was obtained at a hard scale comparable to that of these DY results. This opens the way for possible tests of fundamental QCD universality predictions.
Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise
We have performed the most comprehensive resonance-model fit of π − π − π þ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction π − þ p → π − π − π þ þ p recoil with a 190 GeV=c pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, 0.5 < m 3π < 2.5 GeV=c 2 , and simultaneously in 11 bins of the reduced four-momentum transfer squared, 0.1 < t 0 < 1.0 ðGeV=cÞ 2 , are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with J PC ¼ 0 −þ , 1 þþ , 2 þþ , 2 −þ , 4 þþ , and spin-exotic 1 −þ quantum numbers. The model contains the well-known resonances πð1800Þ, a 1 ð1260Þ, a 2 ð1320Þ, π 2 ð1670Þ, π 2 ð1880Þ, and a 4 ð2040Þ. In addition, it includes the disputed π 1 ð1600Þ, the excited states a 1 ð1640Þ, a 2 ð1700Þ, and π 2 ð2005Þ, as well as the resonancelike a 1 ð1420Þ. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 t 0 bins. We extract the relative branching fractions of the ρð770Þπ and f 2 ð1270Þπ decays of a 2 ð1320Þ and a 4 ð2040Þ, where the former one is measured for the first time. In a novel approach, we extract the t 0 dependence of the intensity of the resonances and of their phases. The t 0 dependence of the intensities of most resonances differs distinctly from the t 0 dependence of the nonresonant components. For the first time, we determine the t 0 dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances. We have performed extensive systematic studies on the model dependence and correlations of the measured physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.