We analyse the seismic catalogue of the local earthquakes which occurred at SommaVesuvius volcano in the past three decades . The seismicity in this period can be described as composed of a background level, characterised by a low and rather uniform rate of energy release and by sporadic periods of increased seismic activity. Such relatively intense seismicity periods are characterised by energy rates and magnitudes progressively increasing in the critical periods. The analysis of the b value in the whole period evidences a well-defined pattern, with values of b progressively decreasing, from about 1.8 at the beginning of the considered period, to about 1.0 at present. This steady variation indicates an increasing dynamics in the volcanic system. Within this general trend it is possible to identify a substructure in the time sequence of the seismic events, formed by the alternating episodes of quiescence and activity. The analysis of the source moment tensor of the largest earthquakes shows that the processes at the seismic source are generally not consistent with simple double-couples, but that they are compatible with isotropic components, mostly indicating volumetric expansion. These components are shown to be statistically significant for most of the analysed events. Such focal mechanisms can be interpreted as the effect of explosion phenomena, possibly related to volatile exsolution from the crystallising magma.The availability of a reduced amount of high quality data necessary for the inversion of the source moment tensor, the still limited period of systematic observation of Vesuvius micro-earthquakes and, above all, the absence of eruptive events during such interval of time, cannot obviously permit the outlining of any formal premonitory signal. Nevertheless, the analysis reported in this paper indicates a progressively evolving dynamics, characterised by a generally increasing trend in the seismic activity in the volcanic system and by a significant volumetric component of recent major events, thus posing serious concern for a future evolution towards eruptive activity.
The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and maninduced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismoresistant constructions and in the reinforcement of the existing built environment, and, therefore, supply a particularly powerful tool for the prevention aspects of Civil Defense. We present a selection of the main results obtained for the cities of Algiers,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.