This paper provides the first meaningful documentation and analysis of an established technique which aims to obtain an approximate solution to linear programming problems prior to applying the primal simplex method. The underlying algorithm is a penalty method with naive approximate minimization in each iteration. During initial iterations an approach similar to augmented Lagrangian is used. Later the technique corresponds closely to a classical quadratic penalty method. There is also a discussion of the extent to which it can be used to obtain fast approximate solutions of LP problems, in particular when applied to linearizations of quadratic assignment problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.