Cadmium is an important environmental pollutant and a potent toxicant to bacteria, algae, and fungi. Mechanisms of Cd+2 toxicity and resistance are variable, depending on the organism. The present work reports the use of live and dead Spirulina sp. for sorption of Cd+2. This investigation shows that this biomass takes up substantial amount of Cd+2 ions. IR spectroscopic study, kinetics models, Langmuir & Freundlich adsorption isotherms, scanning electron microscopic analysis of Spirulina sp., and the Spirulina sp. treated with different metal ions have been employed to understand the sorption mechanism. Infrared spectra of live Spirulina treated with Cd+2 ions for different lengths of time have been taken to understand the time dependency of metal interaction.
Metal binding by algae has enormous potential for environmental bioremediation targeting towards detoxification of water bodies. The present work reports the use of live and dead Spirulina sp. for sorption of metals like Cr(3+), Ni(2+), Cu(2+), and Cr(6+) in form of Cr(2)O(7)(2-). Preliminary investigation shows that this biomass takes up substantial amount of metal ions indicated above. IR spectroscopic study, kinetics models, Langmuir and Freundlich adsorption isotherms, SEM analysis, and fluorescence microscopic study of Spirulina sp. and the Spirulina sp. treated with different metal ions have been employed to understand the sorption mechanism. It is hoped that live Spirulina sp. will be a strong candidate for management of industrial wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.