Rheological, mechanical, and adhesive properties have been studied of two‐phase polymer blends containing a liquid crystal copolyester of poly(ethylelene terephthalate) and p‐hydroxybenzoic acid plus isotactic polypropylene (PP) with varying compositions and concentrations of glass fibers. Perfect fibrillation of the disperse LC‐phase into the PP‐matrix in capillary flow was observed at LCP concentrations >20 wt% and temperatures >488 K. This effect leads to a decrease of blend viscosity and a reinforcing of the extrudate's mechanical characteristics. At the same time, more essential reinforcement is achieved by the simultaneous addition of the reinforcing agents both of the LCP and glass fibers. Processing of PP is not impaired. It was found that the adhesive strength increases substantially when the amount of LCP in the blend exceeds a definite level, corresponding to a phase inversion. The results are explained by the formation near the interface of two adhesion layers: the first is composed of pure LCP having a higher surface tension, whereas the second layer represents the blend of various compositions. At small amounts of LCP, the adhesion failure proceeds in the interphase between the LCP and the blend. After the phase inversion, where adhesion strongly increases, the failure of adhesion joints proceeds near the interface between LCP and the glass.
An efficient method is developed to achieve improved dispersion of detonation nanodiamond particles in amorphous thermoplastic matrices. For an estimation of the nanodiamond distribution in slices, a method of optical and transmission electron microscopy is used. The complex set of mechanical properties of polymer-nanodiamond composites is considered: tensile properties, Izod impact strength and Brinell hardness. It is found that the reinforcing and toughening effects of uniformly-dispersed nanoparticles on polymer matrices is pronounced at lower loading compared with traditional mixing procedure.
SYNOPSISThe rheological properties of polymer blends containing polysulfone and LC polyester have been investigated in terms of the morphology and physical-mechanical characteristics of the extrudates. The peculiarities of rheological behavior are connected with the morphology of stream, the latter being maintained also in solid extrudates. The reinforcement of an isotropic matrix by LC polymers as well as formation of an anisotropic surface layer leads to a specific change in the strength properties of compositions. A maximal increase in the strength and initial modulus was observed for blends containing not more than 10% LC polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.