Homo-oligomer DNA strands were immobilized onto silicon/silicon dioxide electrodes using 3-aminopropyltriethoxysilane. These modified substrates were used as working electrodes in a three-electrode electrochemical cell. In-phase and out-of-phase impedances were measured in the range -1 to +1 V with respect to an Ag/AgCl reference electrode, with a superimposed 10 mV ac signal at frequencies of 20 and 100 kHz. Ex situ hybridization with complementary oligomer strands, performed at the surface of modified electrodes, is clearly reflected by negative shifts of about 100 mV in the flat-band potential of the semiconductor. Consecutive hybridization-denaturation steps show that the shifts are reproducible and the process is reversible. The in situ hybridization of complementary strands has also been observed with impedance measurements at Si/SiO 2 substrates and with the use of a field effect device. The direct detection of hybridization with a field effect device was performed under constant drain current mode, and the corresponding variations observed for the gate potential during hybridization are in good agreement with the flat band potential shifts observed with the impedance experiments. Measurements made in the presence of noncomplementary strands demonstrate the selectivity of the device.
This work presents a simple microfluidic device with an integrated thin-film heater for studies of DNA hybridization kinetics and double-stranded DNA melting temperature measurements. The heating characteristics of the device were evaluated with a novel, noninvasive indirect technique using molecular beacons as temperature probes inside reaction chambers. This is the first microfluidic device in which thermal dehybridization of surface-bound oligonucleotides was performed for measurement of double-stranded DNA melting temperatures with +/- 1 degrees C precision. Surface modification and oligonucleotide immobilization were performed by continuously flowing reagents through the microchannels. The resulting reproducibility of oligonucleotide surface densities, at 9% RSD, was better than for the same modification chemistries on glass slides in unstirred reagent solutions (RSD=20%). Moreover, the surface density of immobilized DNA probe molecules could be varied controllably by changing the concentration of the reagent solution used for immobilization. Thus, excellent control of surface characteristics was made possible, something which is often difficult to achieve with larger devices. Solid-phase hybridization reactions, a fundamental aspect of microarray technologies often taking several hours in conventional systems, were reduced to minutes in this device. It was also possible to determine forward rate constants for hybridization, k. These varied from 820,000 to 72,000 M(-1) s(-1), decreasing as surface densities increased. Surface densities could therefore be optimized to obtain rapid hybridization using such an approach. Taken together, this combined microfluidic/small-volume heating approach represents a powerful tool for surface-based DNA analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.