Multilayer barrier films were fabricated by stacking multiple pairs of inorganic and organic layers on organic-treated poly(ethylene terephthalate) (PET) substrates. The inorganic and organic moisture barrier layers were prepared by plasma-enhanced chemical vapor deposition (PECVD) and bar coating, respectively, at room temperature. The water vapor transmission rate (WVTR) through six pairs of inorganic/organic stacking layers can reach 2.1×10-5 g m-2 day-1. By laminating two PET substrates, both coated with two pairs of inorganic/organic barrier layers, individually achieving a WVTR of 5 ×10-3 g m-2 day-1, an ultrahigh-strength moisture barrier film could be produced with the WVTR significantly lowered to as much as 4×10-5 g m-2 day-1, which was in the same order of magnitude as a single PET film coated with six pairs of inorganic/organic stacking layers. Even after bending 5,000 times, the laminated barrier film maintained not only the high moisture barrier strength but also the good optical transparency and flexibility. The possible reason for the significant improvement of the moisture barrier strength by lamination is also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.