According to United Nations, corruption is a systemic and adaptive phenomenon that requires comprehensive and multidisciplinary approaches for its effective prevention and combat. However, traditional approaches lack the analytical tools to handle the structural and dynamical aspects that characterize modern social, political and technological systems where corruption takes place. On this matter, complex systems science has emerged as a comprehensive framework to study highly adaptive phenomena from natural to socio-technical settings. Thus, in this article we present an empirical approach to model corruption using the concepts and tools of complexity science, mainly, complex networks science. Under this framework, we describe a major corruption scandal that took place in Mexico involving a network of hundreds of shell companies used to embezzle billions of dollars. We describe the structure and dynamics of this corporate network using available information related to their personnel and the date of the companies' creation. We measured some global parameters, such as density, diameter, average path length, and average degree in order to provide systematic evidence on which corporate characteristics are likely to signal corruption. Moreover, this analysis also provides an objective perspective of the systemic nature of events where companies are abused for corrupt purposes, and the shortcomings of reductionistic analyses. Major corruption scandals comprise both legal and illegal deeds, in addition to several parties acting simultaneously over extended time periods. As a whole, such scandals pose enormous challenges for the study of law and put the legal design of administrative and criminal controls to the test.
Corruption in public procurement transforms state institutions into private entities where public resources get diverted for the benefit of a few. On this matter, much of the discussion centers on the legal fulfillment of the procurement process, while there are fewer formal analyses related to the corporate features which are most likely to signal organized crime and corruption. The lack of systematic evidence on this subject has the potential to bias our understanding of corruption, making it overly focused on the public sector. Nevertheless, corruption scandals worldwide tell of the importance of taking a better look at the misuse and abuse of corporations for corrupt purposes. In this context, the research presented here seeks to contribute to the understanding of the criminal conspiracy of companies involved in public procurement corruption scandals under a network and complexity science perspective. To that end, we make use of a unique dataset of the corporate ownership and management information of four important and recently documented cases of corruption in Mexico, where hundreds of companies were used to embezzle billions of dollars. Under a bipartite network approach, we explore the relations between companies and their personnel (shareholders, legal representatives, administrators, and commissioners) in order to characterize their static and dynamic networked structure. In terms of organized crime and using different network properties, we describe how these companies connect with each other due to the existence of shared personnel with role multiplicity, leading to very different conspiracy networks. To best quantify this behavior, we introduce a heuristic network-based conspiracy indicator that together with other network metrics describes the differences and similarities among the networks associated with each corruption case. Finally, we discuss some public policy elements that might be needed to be considered in anti-corruption efforts related to corporate organized crime.
In recent years, the analysis of economic crime and corruption in procurement has benefited from integrative studies that acknowledge the interconnected nature of the procurement ecosystem. Following this line of research, we present a networks approach for the analysis of shell-companies operations in procurement that makes use of contracting and ownership data under one framework to gain knowledge about the organized crime behavior that emerges in this setting. In this approach, ownership and management data are used to identify connected components in shell-company networks that, together with the contracting data, allows to develop an alternative representation of the traditional buyer-supplier network: the module-component bipartite network, where the modules are groups of buyers and the connected components are groups of suppliers. This is applied to two documented cases of procurement corruption in Mexico characterized by the involvement of large groups of shell-companies in the misappropriation of millions of dollars across many sectors. We quantify the economic impact of single versus connected shell-companies operations. In addition, we incorporate metrics for the diversity of operations and favoritism levels. This paper builds into the quantitative organized crime in the private sector studies and contributes by proposing a networks approach for preventing fraud and understanding the need for legal reforms.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.