We study the noise characteristics of stochastic oscillations in protein number dynamics of simple genetic oscillatory systems. Using the three-component negative feedback transcription regulatory system called the repressilator as a prototypical example, we quantify the degree of fluctuations in oscillation periods and amplitudes, as well as the noise propagation along the regulatory cascade in the stable oscillation regime via dynamic Monte Carlo simulations. For the single protein-species level, the fluctuation in the oscillation amplitudes is found to be larger than that of the oscillation periods, the distributions of which are reasonably described by the Weibull distribution and the Gaussian tail, respectively. Correlations between successive periods and between successive amplitudes, respectively, are measured to assess the noise propagation properties, which are found to decay faster for the amplitude than for the period. The local fluctuation property is also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.