Individual recognition using biometric technology can be utilized in creating security systems that are important in modern life. The individuals recognition in hospitals generally done by conventional system so it makes more time in taking identity. A newborn baby will proceed an identity tagging after birth process is complete. This identity using a bracelet filled with names and ink stamps on paper that will be prone to damage or crime. The solution is to store the baby's identity data digitally and carry out the baby's identification process. This system can increase safety and efficiency in storing a baby's footprint image. The implementation of baby's footprint image identification starting from the acquisition of baby's footprint image, preprocessing such as selecting ROI size baby's footprint object, feature extraction using wavelet method and classification process using K-Nearest Neighbor (K-NN) method because this method has been widely used in several studies of biometric identification systems. The test data came from 30 classes with 180 images test right and left baby's footprint. The identification results using 200x500 size ROI with level 4 wavelet decomposition get recognition results with an accuracy of 99.30%, 90.17% precision, and 89.44% recall with a test computation time of 8.0370 seconds.
The application of information technology is rapidly utilized in the medical system. There is also a massive development in the automatic method for recognizing and detecting objects in the real world. In this study, we present a system called Medical Vision which is designed for people who has no expertise in medical. Medical Vision is a web and mobile-based application to give an initial knowledge in a medical image. This system has 5 features; object detection, web detection, object labeling, safe search, and image properties. These features are run by embedding Google Vision API in the system. We evaluate this system by observing the result of some medical images which inputted into the system. The results showed that our system presents a promising performance and able to give relevant information related to the given image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.