The effects of acetaldehyde, benzaldehyde, cinnamaldehyde, ethanol, benzyl alcohol, nerolidol, 2-nonanone, beta-ionone, and ethyl formate vapors on the growth of Rhizopus stolonifer, Penicillium digitatum, Colletotrichum musae, Erwinia carotovora, and Pseudomonas aeruginosa on agar medium were evaluated. The aldehydes were found to be the strongest growth inhibitors and the most lethal to the fungal spores and mycelia and bacterial cells. The average minimum inhibitory concentrations (MICs) of aldehydes that were germicidal to decay microorganisms were 0.28, 0.49, and 0.88 mmol per Petri dish, for cinnamaldehyde, benzaldehyde, and acetaldehyde, respectively. Ethanol also inhibited growth completely, but the MIC, which was 14.6 mmol per Petri dish, was significantly higher than those of the aldehydes. Ethanol can be considered germistatic because the alcohol does not inhibit germination of spores completely; it completely controlled only mycelial growth. The ketones tended to be effective only on P. digitatum and C. musae, whereas ethyl formate was not effective except on P. digitatum. The concentration of a volatile compound in the headspace of the Petri dish and its diffusion into the medium largely determined its efficacy against decay microorganisms.
Fresh-cut tropical fruit is increasingly popular currently, stimulated by public awareness of health and practical lifestylefresh-cut fruit presenting consumers' convenience, safety, and quality. Tropical fruit contains functional components that are quite varied and good for health. Mangosteen, Mango, and Rambutan are three exotic tropical fruits that have high economic value and are liked by foreign people. They have a nonedible relatively high and potentially processed into fresh-cut fruit-the process of stripping cutting and slicer, causing wounds that spur damage. During storage, fresh-cut fruits undergo physical-chemical changes-increased respiration rate, ethylene production, oxidation, and browning processes that can shorten shelf life. The damage will be faster if stored at an improper temperature. Fresh-cut fruit is preferably stored at cold temperatures, to extend the shelf life. The research aims to determine the physicochemical characteristics of fresh-cut tropical fruits during cold storage. The research uses a pattern of random group three replicate. The first factor is fruit type (Mango, Mangosteen, Rambutan); the second factor is storage time in cold temperatures (0, 5, 10 days). The variables observed in the study included physical characteristics color (L*a*b*), weight, and texture. Observations of chemical characteristics include moisture content, pH, total acids, vitamin C levels, and total dissolved solids. Freshcut tropical fruit has different physicochemical characteristics and experiences deterioration during cold temperatures. The characteristics of tropical fruit have changed significantly on day 5. Mango shows more significant changes than others, seen from variable moisture content, vitamin C, color, and texture. Meanwhile, based on the physicochemical analysis, rigidity of fresh-cut Mango higher than Mangosteen and Rambutan.
<abstract> <p>Fresh-cut mangosteen is a minimally processed product that is currently popular due to the requirement for fresh produce, quality, convenience, and minimal preparation. The process of skin removal causes fast deterioration in fresh-cut mangosteen. The nano edible coating of aloe vera gel or nano-ecogel can be applied to delay physicochemical changes in fresh-cut mangosteen. This study is intended to determine the effect of nano-ecogel concentration and immersion time to maintain the physicochemical characteristics of fresh-cut mangosteen. The effects of the concentration of nano-ecogel (100%, 75%, 50%, and 25%, <italic>v/v</italic>) and immersion time (1, 2, and 3 min) of fresh-cut mangosteen on acidity, vitamin C, water content, total dissolved solids, weight loss, texture and browning index were evaluated for nine days of cold storage. The concentration of nano-ecogel, immersion time, and interaction affected the acidity, water content, total dissolved solids, weight loss, and browning index of fresh-cut mangosteen. The best treatment was immersion in 50% nano-ecogel for 1 min.</p> </abstract>
Edible coating has long been known as an alternative to extend the fruit shelf life. One of the natural ingredients that can be used as an edible coating is an aloe gel which rich in functional components. The activity of aloe gel enzymes is very high. To maintain stability should be stored at the right temperature. The purpose of this research is to know the stability of aloe gel as an edible coating that is reviewed from treatment of temperature and length of storage. The study uses a complete randomized design of factorial patterns consisting of two factors: the first factor of the storage temperature (28°C and 7°C) and the second factor is storage time (0, 2, 4, 6, and 8 days). The observed variables include colour, pH, moisture, viscosity, and total microbes. The stability of the edible aloe gel coating is best obtained from the temperature treatment 7°C with the duration of storage 4 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.