Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase. The SCW’s directionality and speed are controlled by a spatiotemporal gradient of cdk1-cyclinB. This gradient is formed by the release of cdk1-cyclinB from the asymmetrically located nucleus, and progressive degradation of cyclinB. By combining quantitative imaging, biochemical and mechanical perturbations with mathematical modeling, we demonstrate that the SCWs result from the spatiotemporal integration of two conserved regulatory modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.
We present the calculation of next-to-next-to-leading order (NNLO) corrections in perturbative QCD for the production of a Higgs boson decaying into a pair of bottom quarks in association with a leptonically decaying weak vector boson: pp → V H+X → ¯ bb + X. We consider the corrections to both the production and decay sub-processes, retaining a fully differential description of the final state including off-shell propagators of the Higgs and vector boson. The calculation is carried out using the antenna subtraction formalism and is implemented in the NNLOJET framework. Clustering and identification of b-jets is performed with the flavour-k t algorithm and results for fiducial cross sections and distributions are presented for the LHC at √ s = 13 TeV. We assess the residual theory uncertainty by varying the production and decay scales independently and provide scale uncertainty bands in our results, yielding percent-level accurate predictions for observables in this Higgs production mode computed at NNLO. Confronting a naïve perturbative expansion of the cross section against the customary re-scaling procedure to a fixed branching ratio reveals that starting from NNLO, the latter could be inadequate in estimating missing higher-order effects through scale variations.arXiv:1907.05836v1 [hep-ph]
Abstract:In gold-gold collisions of the Relativistic Heavy Ion Collider a perfect fluid of strongly interacting quark gluon plasma (sQGP) is created. The time evolution of this fluid can be described by hydrodynamical models. After an expansion, hadrons are created during the freeze-out period. Their distribution reveals information about the final state. To investigate the time evolution one needs to analyze penetrating probes: e.g. direct photon observations. In this paper we analyze a 1+3 dimensional solution of relativistic hydrodynamics. We calculate momentum distribution, azimuthal asymmetry and momentum correlations of direct photons. Based on earlier fits to hadronic spectra, we compare photon calculations to measurements to determine the equations of state and the initial temperature of sQGP. We find that the initial temperature in the center of the fireball is 507±12 MeV, while for the sound speed we get =0.36±0.02. We also estimate a systematic error of these results. We find that the measured azimuthal asymmetry is also compatible with this model. We also predict a photon source that is significantly larger in the out direction than in the side direction. PACS
We present the derivation of the NNLO two-parton final state contributions to top pair production in the quark-antiquark channel proportionnal to the leading colour factor N 2 c . Together with the three and four-parton NNLO contributions presented in a previous publication, this enables us to complete the phenomenologically most important NNLO corrections to top pair hadro-production in this channel. We derive this two-parton contribution using the massive extension of the NNLO antenna subtraction formalism and implement those corrections in a parton-level event generator providing full kinematical information on all final state particles. In addition, we also derive the heavy quark contributions proportional to N h . Combining the new leading-colour and heavy quark contributions together with the light quark contributions derived previously, we present NNLO differential distributions for LHC and Tevatron. We also compute the differential top quark forward-backward asymmetry at Tevatron and find that our results are in good agreement with the measurements by the D0 collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.