Transforming growth factor  (TGF-) has been shown to participate in the pathophysiology of diabetic complications. As shown most recently, TGF- stimulates the expression of a distinct serine͞threonine kinase (hSGK) which had previously been cloned as an early gene transcriptionally regulated by cell volume alterations. The present study was performed to elucidate transcription and function of hSGK in diabetic nephropathy. As shown by Northern blotting, an increase of extracellular glucose concentration increased hSGK mRNA levels in cultured cells, an effect qualitatively mimicked by osmotic cell shrinkage or treatment with TGF- (2 g͞liter), phorbol 12,13-didecanoate (1 M), or the Ca 2؉ ionophore ionomycin (1 M) and blunted by high concentrations of nifedipine (10 and 100 M). In situ hybridization revealed that hSGK transcription was markedly enhanced in diabetic nephropathy, with particularly high expression in mesangial cells, interstitial cells, and cells in thick ascending limbs of Henle's loop and distal tubules. According to voltage clamp and tracer flux studies in Xenopus oocytes expressing the renal epithelial Na ؉ channel ENaC or the mouse thick ascending limb Na ؉ ,K ؉ ,2Cl ؊ cotransporter BSC-1, coexpression with hSGK stimulated ENaC and BSC-1 11-fold and 6-fold, respectively, effects reversed by kinase inhibitors staurosporine (1 M) and chelerythrine (1 M) and not elicited by inactive hSGK. In conclusion, excessive extracellular glucose concentrations enhance hSGK transcription, which in turn stimulates renal tubular Na ؉ transport. These observations disclose an additional element in the pathophysiology of diabetic nephropathy.protein kinase C ͉ endothelial cells ͉ kidney ͉ epithelial Na ϩ channel ͉ Na ϩ ,K ϩ ,2Cl Ϫ cotransporter
Cystic fibrosis (CF) is characterized by impaired Cl- secretion and increased Na+ reabsorption in several tissues including respiratory epithelium. Many CFTR mutations have been identified over the past years. However, only a poor correlation between the genotype and lung phenotype was found suggesting additional factors influencing the phenotype and course of the disease. The serine/threonine kinase SGK1 has recently been shown to stimulate the activity of the epithelial Na+ channel ENaC. A variety of stimuli such as aldosterone, cell shrinkage, insulin or TGF-β1 stimulate transcription and activate the SGK1 kinase. Here we further examined the effects of SGK1 on ENaC and CFTR which have mutual interactions and we analyzed sgk1 mRNA abundance in lung tissue from CF patients. Coexpression of CFTR and h-SGK1 in Xenopus oocytes increased ENaC currents as previously described. In addition CFTR mediated currents were also stimulated. h-SGK1 accelerated the expression of the amiloride sensitive Na+- current in Xenopus oocytes paralleled by increased ENaC-protein abundance in the oocyte membrane, an effect which was reversed by a h-SGK1K127R mutation lacking the ATP-binding site. The cation selectivity or Na+ affinity were not affected. However, coexpression of h-SGK1 with ENaC altered the sensitivity of the Na+-channel to the inhibitors amiloride and triamterene. The inhibitory effect of CFTR expression on ENaC current was not affected by coexpression of h-SGK1 in Xenopus oocytes. Lung tissue from CF patients strongly expressed the serine/threonine kinase h-sgk1 which was not the case for non-CF lung tissue. Loss of CFTR function itself in a CF lung epithelial cell line did not increase SGK1 expression. In summary, enhanced expression of h-SGK1 in epithelial cells of CF-lung tissue may be a novel pathophysiological factor contributing to increased Na+ channel activity and thus to increased Na+ transport in CF. .
L-Carnitine is essential for the translocation of acyl-carnitine into the mitochondria for beta-oxidation of long-chain fatty acids. It is taken up into the cells by the recently cloned Na(+)-driven carnitine organic cation transporter OCTN2. Here we expressed hOCTN2 in Xenopus laevis oocytes and investigated with two-electrode voltage- clamp and flux measurements its functional and pharmacological properties as a Na(+)-carnitine cotransporter. L-carnitine transport was electrogenic. The L-carnitine-induced currents were voltage and Na(+) dependent, with half-maximal currents at 0.3 +/- 0.1 mM Na(+) at -60 mV. Furthermore, L-carnitine-induced currents were pH dependent, decreasing with acidification. In contrast to other members of the organic cation transporter family, hOCTN2 functions as a Na(+)-coupled carnitine transporter. Carnitine transport was stereoselective, with an apparent Michaelis-Menten constant (K(m)) of 4.8 +/- 0.3 microM for L-carnitine and 98.3 +/- 38.0 microM for D-carnitine. The substrate specificity of hOCTN2 differs from rOCT-1 and hOCT-2 as hOCTN2 showed only small currents with classic OCT substrates such as choline or tetraethylammonium; by contrast hOCTN2 mediated transport of betaine. hOCTN2 was inhibited by several drugs known to induce secondary carnitine deficiency. Most potent blockers were the antibiotic emetine and the ion channel blockers quinidine and verapamil. The apparent IC(50) for emetine was 4.2 +/- 1.2 microM. The anticonvulsant valproic acid did not induce a significant inhibition of carnitine transport, pointing to a different mode of action. In summary, hOCTN2 mediates electrogenic Na(+)-dependent stereoselective high-affinity transport of L-carnitine and Na(+). hOCTN2 displays transport properties distinct from other members of the OCT family and is directly inhibited by several substances known to induce systemic carnitine deficiency.
Metabolism of short-chain fatty acids (SCFA) in the brain, particularly that of acetate, appears to occur mainly in astrocytes. The differential use has been attributed to transport, but the extent to which transmembrane movement of SCFA is mediated by transporters has not been investigated systematically. Here we tested the possible contribution of monocarboxylate transporters to SCFA uptake by measuring fluxes with labelled compounds and by following changes of the intracellular pH in Xenopus laevis oocytes expressing the isoforms MCT1, MCT2 or MCT4. All isoforms mediated significant transport of acetate. Formate, however, was transported only by MCT1. The contribution of MCT1 to SCFA transport was determined by using phloretin as a high-affinity inhibitor, which allowed a paired comparison of oocytes with and without active MCT1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.