Restoring forests in areas where they once stood is an important step towards increasing carbon sequestration. However, reforestation requires an increase in current levels of seedling production in the tree nurseries. The purpose of this work was to study the effectiveness of preparations based on bacteria and humic substances (HSs) to stimulate the growth of tree seedlings in a nursery. Two selected strains of Pseudomonas and humic substances were used to treat pine and poplar plants. The treatment of seedlings was carried out during their transplantation and after it, and the effects of treatment on shoot elongation, shoot and root mass were evaluated. Treatments with both bacterial strains enhanced the growth of poplar and pine shoots and roots, which was explained by their ability to synthesize auxins. P. protegens DA1.2 proved to be more effective than P. sp. 4CH. The treatment of plants with humic substances increased the nitrogen balance index and the content of chlorophyll in the leaves of poplar seedlings, which can elevate carbon storage due to the higher rate of photosynthesis. In addition, the combination of humic substances with P. protegens DA1.2 increased shoot biomass accumulation in newly transplanted pine plants, which indicates the possibility of using this combination in plant transplantation. The increase in length and weight of shoots and roots serves as an indicator of the improvement in the quality of planting material, which is necessary for successful reforestation to increase capture of carbon dioxide.
ExtEndEd AbstrAct:Today the main corrosion protection methods applied in contact devices of rectifying oil processing equipment, in particular, in mesh nozzles made of stainless steel, under relatively high temperatures (150-250 о C) and in the presence of aggressive components in oil raw materials (hydrogen sulfide, sulfides, mercaptans, other sulphurous compounds, chloride ions, organochlorine connections, water) are to use special alloys as protecting covers as well as corrosion inhibitors that reduce corrosion action of hostile environment. At the same time, the disadvantages of the majority of these methods concern high operational costs, insufficient efficiency or protection ability designed only for a certain factor, but not for combination of them.In this regard corrosion resistance of mesh contact devices made of stainless steel (brand SUS 321) has been studied on three types of samples: alloy wire, welded grid, thin leaf. THE RESULTS OF THE SPECIALISTS' AND SCIENTISTS' RESEARCHES MAchinE-rEAdAblE inforMAtion on cc-licEnsEs (htMl-codE) in MEtAdAtA of thE pApErTitanium nitride (TiN) and metallic coatings from nickel (Ni), titanium (Ti) and chrome (Cr) were used as anticorrosion coatings for the mentioned samples. These coverings were applied on samples in two ways: by means of electrolytic method and vacuum ion-plasma dusting. It was determined that optimal coating thickness is 10-15 microns as it is the thickness at which the produced films possess sufficient plasticity and do not exfoliate from the surface of the corresponding corrosion-proof alloy.The research of corrosion of samples of stainless steel SUS 321 with applied coverings and without them was performed by immersing the samples into compositions that contain oil as well as into the modeling hostile oil-containing environment. As a result of the conducted researches it was determined that the protecting covers of chrome and titanium nitride applied with vacuum ion-plasma dusting method are the most effective coatings from the point of view of anticorrosive protection for mesh contact devices of stainless steel used in rectifying columns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.