This article deals with the factorization and solution of nonlocal boundary value problems in a Banach space of the abstract form B1u = Au − SΦ(u) − GΨ(A0u) = f, u ∈ D(B1),where A, A0 are linear abstract operators, S, G are vectors of functions, Φ, Ψ are vectors of linear bounded functionals, and u, f are functions. It is shown that the operator B1 under certain conditions can be factorized into a product of two simpler lower order operators as B1 = BB0. Then the solvability and the unique solution of the equation B1u = f easily follow from the solvability conditions and the unique solutions of the equations Bv = f and B0u = v. The universal technique proposed here is essentially different from other factorization methods in the respect that it involves decomposition of both the equation and boundary conditions and delivers the solution in closed form. The method is implemented to solve ordinary and partial Fredholm integro-differential equations.
Abstract. Let A 0 be a minimal operator from a complex Banach space X into X with finite defect, def A 0 = m , and A is a linear correct extension of1. we characterize the set of all operators B 1 ∈ E m+k c (A 2 0 , A 2 ) with the help of A and some vectors S and G and give the solution of the problem B 1 x = f ,
we describe the subset E
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.