In this study, we assessed the anti-asthmatic effects of heat-inactivated Lactobacillus kefiranofaciens M1 (HI-M1) and its fermented milk using different feeding procedures and at various dosage levels. The possible mechanisms whereby HI-M1 has anti-allergic asthmatic effects were also evaluated. Ovalbumin (OVA)-allergic asthma mice that have been orally administrated the HI-M1 samples showed strong inhibition of production of T helper cell (Th) 2 cytokines, pro-inflammatory cytokines, and Th17 cytokines in splenocytes and bronchoalveolar fluid compared to control mice. An increase in regulatory T cell population in splenocytes in the allergic asthma mice after oral administration of H1-M1 was also observed. In addition, all of the features of the asthmatic phenotype, including specific IgE production, airway inflammation, and development of airway hyperresponsiveness, were depressed in a dose-dependent manner by treatment. These findings support the possibility that oral feeding of H1-M1 may be an effective way of alleviating asthmatic symptoms in humans.
We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenic Staphylococcus aureus in vitro and in vivo in this study. In vitro data indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL−1). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test in S. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid of S. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified after in vitro treatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.
Aims: To determine the relationship between adhesive ability of probiotics and acidic residues in human colonic mucin, we developed a new screening method using Biacore to evaluate adherence of bacteria before and after sialic acid or sulphate residues were blocked or removed from mucin. Methods and Results: Ten strains of lactobacilli and three strains of bifidobacteria isolated from human faeces were evaluated for their adhesive properties to soluble human colonic mucin (sHCM) using the Biacore binding assay. Three strains (Lactobacillus strain ME-522, Lact. gasseri ME-527 and Bifidobacterium bifidum MCC1092) showing significant adherence were selected. Decreased binding activities were observed after removing sialic acid of sHCM using sialidase. However, after removing the sulphate residue using sulphatase, the adhesion of ME-527 decreased; whereas the remaining two strains had increased adhesion. The adhesion of three probiotics significantly decreased after the sulphate residue was blocked by elution with barium chloride. Conclusions: A new evaluation method using the Biacore assay was developed to observe binding properties to the acidic residues of sHCM. Results indicated that there was a strong relationship between probiotic adhesion and acidic residues of sHCM. Significance and Impact of the Study: This is the first report showing a screening method that quantitatively measures the binding between bacteria and acidic residues in sHCM using the Biacore binding assay; and provides a new method for the selection of probiotics in the future.
The purpose of this study was to identify species of lactic acid bacteria in Taiwanese ropy fermented milk and to study their microbial dynamics during the fermentation process through conventional microbiological cultivation and PCR-denaturing gradient gel electrophoresis. Identification results indicated that Lactococcus lactis ssp. cremoris and Leuconostoc mesenteroides ssp. mesenteroides were the major lactic acid bacteria in Taiwanese ropy fermented milk. Interestingly, 3 groups were identified as Lc. lactis ssp. cremoris using 16S rDNA sequencing, but they showed different denaturing gradient gel electrophoresis patterns and assimilation of carbohydrates. In addition, the microbial dynamics study in different fermentation stages demonstrated that Lc. lactis ssp. cremoris was the most dominant bacterial species in the samples, followed by Leu. mesenteroides ssp. mesenteroides with no differences among the fermentation stages. Finally, the microbial distribution profiles showed that the microbial ecology was different in bovine, caprine, and reconstituted milk, which might further affect the characteristics of the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.