Liquid loading is an undesired phenomenon in gas wells that occurs when producing wells attain a flow rate below which liquid will not be able to flow to the surface. The inability of the energy from the gas to transport the liquid to the surface causes back flow and eventual accumulation of liquid at the wellbore. This is characterised by intermittent flow, which, if left unchecked, can eventually kill the well. An effective and reliable predictive method must therefore, be employed. In this study, improved models based on data set from condensate/water in a gas well were developed by applying firefly (FA) and particle swarm optimisation (PSO) algorithms. The results showed that the model developed out perform many of the existing models. The models predicted liquid loading in gas well at 86% level of accuracy compared to the 81% highest possible from published models. Although, the FA and PSO models predicted liquid loading at higher accuracy compared with Turner and Coleman models for higher wellhead pressure systems, the Coleman model appeared to perform better in the prediction of critical gas rate for low-pressure systems. However, the developed model can significantly improve the prediction of liquid loading in gas wells at a higher reliability and accuracy levels. Thus, the proposed models can be a veritable tool for accurately predicting liquid loading in gas wells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.