A multivariate errors-in-variables (EIV) model with an intercept term, and a polynomial EIV model are considered. Focus is made on a structural homoskedastic case, where vectors of covariates are i.i.d. and measurement errors are i.i.d. as well. The covariates contaminated with errors are normally distributed and the corresponding classical errors are also assumed normal. In both models, it is shown that (inconsistent) ordinary least squares estimators of regression parameters yield an a.s. approximation to the best prediction of response given the values of observable covariates. Thus, not only in the linear EIV, but in the polynomial EIV models as well, consistent estimators of regression parameters are useless in the prediction problem, provided the size and covariance structure of observation errors for the predicted subject do not differ from those in the data used for the model fitting.
An adjusted least squares estimator in a linear multivariate vector errorin-variables regression model is considered in this paper. Conditions for the asymptotic normality of this estimator are given. A modification of the estimator is constructed whose asymptotic properties are the same as those of the adjusted least squares estimator and which is stable even if a sample is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.