Abstract-This paper presents an integral equation that can handle wire antennas on a semi-infinite dielectric material. The integral equation is reduced to a set of linear equations by the method of moments. For efficiency, the impedance matrix element Zm;n is divided into two parts on the basis of weighted Green's function extractions. The far-zone radiation field, which is formulated using the stationary phase method, is also described. After the validity of the presented numerical techniques is checked using a bow-tie antenna, a spiral antenna is analyzed. The current distribution, radiation pattern, axial ratio, power gain, and input impedance are discussed. It is found that the radiation field inside a dielectric material is circularly polarized. As the relative permittivity of the dielectric material increases, the angle coverage over which the axial ratio is less than 3 dB becomes narrower.Index Terms-Millimeter-wave antennas, spiral antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.