The difficulty in achieving well-to-seismic ties due to errors arising from wrong time-to-depth conversions has been as a result of ignoring anisotropy in seismic processing. Anisotropy plays a vital role in the processing and interpretation of seismic data. In this work, an inversion method based on the elastic stiffness tensors was adopted to estimate and quantify anisotropy in two depobelts using petrophysical well logs in Niger delta (Central Swamp and Greater Ughelli). Results show that the estimated delta (δ), epsilon (ε), gamma (γ) and eta (η) exhibit a high degree of anisotropy in the shales than in the sands. The parameters were observed to be higher in the Central Swamp than the Greater Ughelli depobelt. This behavior could be associated with the alternating sequence of massive shale and sand beds geologically observed within this depobelt. This work was also able to derive empirical relations that could be used in estimating these parameters in the depobelts once appropriate information or data for any one parameter is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.