It is well-known that in spite of sharing some properties with conventional particles, topological geons in general violate the spin-statistics theorem. On the other hand, it is generally believed that in quantum gravity theories allowing for topology change, using pair creation and annihilation of geons, one should be able to recover this theorem. In this paper, we take an alternative route, and use an algebraic formalism developed in previous work. We give a description of topological geons where an algebra of "observables" is identified and quantized. Different irreducible representations of this algebra correspond to different kinds of geons, and are labeled by a non-abelian "charge" and "magnetic flux". We then find that the usual spin-statistics theorem is indeed violated, but a new spin-statistics relation arises, when we assume that the fluxes are superselected. This assumption can be proved if all observables are local, as is generally the case in physical theories. Finally, we also discuss how our approach fits into conventional formulations of quantum gravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.