Dimensionality reduction methods are an essential tool for multidimensional data analysis, and many interesting processes can be studied as time‐dependent multivariate datasets. There are, however, few studies and proposals that leverage on the concise power of expression of projections in the context of dynamic/temporal data. In this paper, we aim at providing an approach to assess projection techniques for dynamic data and understand the relationship between visual quality and stability. Our approach relies on an experimental setup that consists of existing techniques designed for time‐dependent data and new variations of static methods. To support the evaluation of these techniques, we provide a collection of datasets that has a wide variety of traits that encode dynamic patterns, as well as a set of spatial and temporal stability metrics that assess the quality of the layouts. We present an evaluation of 9 methods, 10 datasets, and 12 quality metrics, and elect the best‐suited methods for projecting time‐dependent multivariate data, exploring the design choices and characteristics of each method. Additional results can be found in the online benchmark repository. We designed our evaluation pipeline and benchmark specifically to be a live resource, open to all researchers who can further add their favorite datasets and techniques at any point in the future.
Dimensionality reduction methods are an essential tool for multidimensional data analysis, and many interesting processes can be studied as time-dependent multivariate datasets. There are, however, few studies and proposals that leverage on the concise power of expression of projections in the context of dynamic/temporal data. In this paper, we aim at providing an approach to assess projection techniques for dynamic data and understand the relationship between visual quality and stability. Our approach relies on an experimental setup that consists of existing techniques designed for time-dependent data and new variations of static methods. To support the evaluation of these techniques, we provide a collection of datasets that has a wide variety of traits that encode dynamic patterns, as well as a set of spatial and temporal stability metrics that assess the quality of the layouts. We present an evaluation of 11 methods, 10 datasets, and 12 quality metrics, and elect the best-suited methods for projecting time-dependent multivariate data, exploring the design choices and characteristics of each method. All our results are documented and made available in a public repository to allow reproducibility of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.