Speckles are introduced in the ultrasound data due to constructive and destructive interference of the probing signals that are used for capturing the characteristics of the tissue being imaged. There are a plethora of models discussed in the literature to improve the contrast and resolution of the ultrasound images by despeckling them. There is a class of models that assumes that the noise is multiplicative in its original form, and transforming the model to a log domain makes it an additive one. Nevertheless, such a transformation duly oversimplifies the scenario and does not capture the inherent properties of the data-correlated nature of speckles. Therefore, it results in poor reconstruction. This problem is addressed to a considerable extent in the subsequent works by adopting various models to address the data-correlated nature of the noise and its distributions. This work introduces a weberized non-local total bounded variational model based on the noise distribution built on the Retinex theory. This perceptually inspired model apparently restores and improves the contrast of the images without compromising much on the details inherently present in the data. The numerical implementation of the model is carried out using the Bregman formulation to improve the convergence rate and reduce the parameter sensitivity. The experimental results are highlighted and compared to demonstrate the efficiency of the model.
Remotely sensed images are widely used in many imaging applications. Images captured under adverse atmospheric conditions lead to degraded images that are contrast deficient and noisy. This study is intended to address these defects of remotely sensed data efficiently. A perceptually inspired variational model is designed based upon the Bayesian framework, powered by the retinex theory. The atmospheric noise or the shot noise (precisely following a Poisson distribution) and contrast inhomogeneity are addressed in this article. The model thus designed is tested and verified both visually and quantitatively using various test data under different statistical measures. The comparative study reveals the efficiency of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.