Consider the nth order (n ≥ 1) delay differential inequalities and and the delay differential equation , where q(t) ≥ 0 is a continuous function and p, τ are positive constants. Under the condition pτe ≥ 1 we prove that when n is odd (1) has no eventually positive solutions, (2) has no eventually negative solutions, and (3) has only oscillatory solutions and when n is even (1) has no eventually negative bounded solutions, (2) has no eventually positive bounded solutions, and every bounded solution of (3) is oscillatory. The condition pτe > 1 is sharp. The above results, which generalize previous results by Ladas and by Ladas and Stavroulakis for first order delay differential inequalities, are caused by the retarded argument and do not hold when τ = 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.