[1] The analysis for BrO using the technique of differential optical absorption spectroscopy as applied to spectra of light scattered from the zenith sky has historically presented something of a challenge, leading to uncertainty about the accuracy of measurements. This has largely been due to the large sensitivity of the measurement to many analysis parameters and due to the small size of the absorption features being measured. BrO differential slant columns have been measured by six different groups taking part in an intercomparison exercise at Observatoire de Haute-Provence in France from 23 to 27 June 1996. The data are analyzed in a collaborative attempt to improve the overall analysis for BrO through investigation of a series of sources of errors in the instrumentation, calibration, input to the analysis, and the spectral analysis itself. The study included comprehensive sensitivity tests performed using both actual measurements and synthetic data. The latter proved invaluable for assessing several aspects of the spectral analysis without the limitations of spectral quality and instrument variability. The most significant sources of error are identified as the wavelength calibration of several of the absorption cross sections fitted and of the measured spectra themselves, the wavelength region of the fitting, the temperature dependence of the O 3 absorption cross sections, failure to adequately account for the so-called I 0 effect, inadequate offset correction, and inadequate measurement of the individual instrument slit functions. Recommendations for optimal analysis settings are presented, and comparing the results from the analysis of the campaign data shows BrO differential slant column observations from the various groups to be in agreement to within 4% on average between 87°and 90°s olar zenith angle, with a scatter of 16%.
Abstract. During the first measurement campaign of the EU FORMAT project in summer 2002 near Milan, northern Italy, ground-based scattered light differential optical absorption spectroscopy (DOAS) measurements were performed using a new multi-axis instrument. From the data set of this four week measurement period, the detailed analysis results of three days, 12-14 August, are presented exemplary. Slant column densities for formaldehyde (HCHO) and the oxygen dimer (O 4 ) have been retrieved, employing fitting windows from 335 nm to 357 nm and 350 nm to 360 nm respectively. In order to convert slant into vertical columns radiative transfer calculations were perfomred using aerosol parameters derived from the actual O 4 measurements. By analysing the measurements from different viewing directions (zenith, 4x off-axis) vertical profile information, and in particular mixing ratios for the boundary layer have been derived for the first time for HCHO with a multi-axis DOAS (MAX-DOAS) instrument. HCHO vertical columns are in the range of 5 to 20·10 15 molec/cm 2 with an relative error of about 15%. This corresponds to HCHO mixing ratios in the boundary layer of 0.7 ppb to 4.2 ppb, which is in excellent agreement with simultaneous measurements from both a Hantzsch in-situ and a long-path DOAS instrument operated at the same place.
Abstract.Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH 2 O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH 2 O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH 2 O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. TheCorrespondence to: C. Hak (claudia.hak@iup.uni-heidelberg.de) consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.