The possibility that plasma levels of malonaldehyde (MDA) are altered by exercise has been examined. The presence of MDA has been recognized to reflect peroxidation of lipids resulting from reactions with free radicals. Maximal exercise, eliciting 100% of maximal oxygen consumption (VO2max) resulted in a 26% increase in plasma MDA (P less than 0.005). Short periods of intermittent exercise, the intensity of which was varied, indicated a correlation between lactate and MDA (r2 = 0.51) (p less than 0.001). Blood lactate concentrations increased throughout this exercise regimen. A significant decrease (10.3%) in plasma MDA occurred at 40% VO2max. At 70% VO2max plasma MDA was still below resting values, however the trend to an increase in MDA with exercise intensity was evident. At exhaustion, plasma MDA and lactate were significantly greater than at rest. These results suggest, that exhaustive maximal exercise induces free radical generation while short periods of submaximal exercise (i.e. less than 70% VO2max) may inhibit it and lipid peroxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.