The dynamics of complex-valued fractional-order neuronal networks are investigated, focusing on stability, instability and Hopf bifurcations. Sufficient conditions for the asymptotic stability and instability of a steady state of the network are derived, based on the complex system parameters and the fractional order of the system, considering simplified neuronal connectivity structures (hub and ring). In some specific cases, it is possible to identify the critical values of the fractional order for which Hopf bifurcations may occur. Numerical simulations are presented to illustrate the theoretical findings and to investigate the stability of the limit cycles which appear due to Hopf bifurcations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.