A novel time delayed chaotic oscillator exhibiting mono-and double scroll complex chaotic attractors is designed. This circuit consists of only a few operational amplifiers and diodes and employs a threshold controller for flexibility. It efficiently implements a piecewise linear function. The control of piecewise linear function facilitates controlling the shape of the attractors. This is demonstrated by constructing the phase portraits of the attractors through numerical simulations and hardware experiments. Based on these studies, we find that this circuit can produce multi-scroll chaotic attractors by just introducing more number of threshold values.
We construct a new RC phase shift network based Chua's circuit, which exhibits a period-doubling bifurcation route to chaos. Using coupled versions of such a phase-shift network based Chua's oscillators, we describe a new method for achieving complete synchronization (CS), approximate lag synchronization (LS), and approximate anticipating synchronization (AS) without delay or parameter mismatch. Employing the Pecora and Carroll approach, chaos synchronization is achieved in coupled chaotic oscillators, where the drive system variables control the response system. As a result, AS or LS or CS is demonstrated without using a variable delay line both experimentally and numerically.
We introduce a simple parametrically driven dissipative second-order chaotic circuit. In this circuit, one of the circuit parameters is varied by an external periodic control signal. Thus by tuning the parameter values of this circuit, classic period-doubling bifurcation route to chaos is found to occur. The experimentally observed phenomena is further validated through corresponding numerical simulation of the circuit equations. The periodic and chaotic dynamics of this model is further characterized by computing Lyapunov exponents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.