We report that the oxygen binding energy of alloy-core@Pt nanoparticles can be linearly tuned by varying the alloy-core composition. Using this tuning mechanism, we are able to predict optimal compositions for different alloy-core@Pt nanoparticles. Subsequent electrochemical measurements of ORR activities of AuPd@Pt dendrimer-encapsulated nanoparticles (DENs) are in a good agreement with the theoretical prediction that the peak of activity is achieved for a 28% Au/72% Pd alloy core supporting a Pt shell. Importantly, these findings represent an unusual case of first-principles theory leading to nearly perfect agreement with experimental results.
This tutorial review focuses on some recent aspects in the development of synthetic receptors for selective sulfate anion recognition and separation, with a special emphasis to: (i) receptors for selective recognition of sulfate in organic and aqueous media and (ii) receptors for separation of sulfate from water via liquid-liquid extraction and crystallization.
We report electrocatalytic oxidation of formic acid using monometallic and bimetallic dendrimer-encapsulated nanoparticles (DENs). The results indicate that the Au147@Pt DENs exhibit better electrocatalytic activity and low CO formation. Theoretical calculations attribute the observed activity to the deformation of nanoparticle structure, slow dehydration of formic acid, and weak binding of CO on Au147@Pt surface. Subsequent experiments confirmed the theoretical predictions.
The binding and selectivity of halides (spherical) and oxyanions (tetrahedral) toward a recently reported pentafluorophenyl-substituted tripodal urea-based receptor L(1) are examined thoroughly in the solid state by single-crystal X-ray crystallography as well as in solution by multinuclear NMR techniques. Crystallographic results show proof of a fluoride encapsulation in the cavity of L(1) in complex [L(1)(F)][Bu(4)N], . Fluoride encapsulation inside the C(3v) symmetric cleft is observed via six hydrogen bonds to all six urea protons of the receptor. In case of complex crystallographic results show encapsulation of sulfate ion inside a supramolecular cage formed upon 1 : 2 (guest-host) complex formation between sulfate and L(1). Sulfate encapsulation is observed via fourteen hydrogen bonding interactions from all six urea moieties of two L(1) units. Our effort to isolate single crystal of halides/oxyanions complexes of L(2) always yield single crystals of free L(2) though literature shows anion binding with this receptor in solution. Solution state binding studies of L(1) are carried out by (1)H-NMR titration to calculate binding constants, which show the following anion binding sequence H(2)PO(4)(-) > SO(4)(2-)> CH(3)COO(-) > F(-) > Cl(-) >> Br(-) whereas there is no binding with I(-), NO(3)(-) and ClO(4)(-) guests. Comparison of phosphate and sulfate binding in L(1) and L(2), show higher binding with the pentafluorophenyl substituted receptor, L(1). Further (19)F and (31)P-NMR experiments in solution are also carried out to probe the binding of F(-) and H(2)PO(4)(-) with L(1), respectively. Extensive (1)H-NMR experiments in solution and crystallization in the presence of multiple anions are also undertaken to evaluate the selectivity of H(2)PO(4)(-) over other anions.
Efficient fixation of aerial carbon dioxide as carbonate by a simple tripodal urea receptor is demonstrated by crystallizing the carbonate encapsulated molecular capsule in almost quantitative yield, followed by regeneration of free receptor from the capsule under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.